熔融碳酸盐燃料电池双极板流场流道 / 脊宽模拟研究

张瑞云¹, 韩敏芳¹, 申双林², 卢成壮³, 程健³, 许世森⁴,

杨冠军3,黄华3,王菊3

1. 清华大学能源与动力工程系,北京 100084

2. 中国矿业大学电气与动力工程学院, 江苏 徐州 221116

3. 中国华能集团清洁能源技术研究院有限公司(煤基清洁能源国家重点实验室),北京 102209

4. 中国华能集团有限公司,北京 100031

Simulation on the Width of Flow Channel/Ridge in Bipolar Plate of Molten Carbonate Fuel Cell

ZHANG Ruiyun¹, HAN Minfang¹, SHEN Shuanglin², LU Chengzhuang³, CHENG Jian³, XU Shisen⁴, YANG Guanjun³, HUANG Hua³, WANG Ju³

1. Department of Energy and Power Engineering, Tsinghua University, Beijing 100084

2. China University of Mining and Technology Schooling of Electrical and Power Engineering, Xuzhou, Jiangsu 221116

3. Huaneng Clean Energy Research Institute (State Key Laboratory for Coal based Clean Energy), Beijing 102209

4. China Huaneng Group Ltd., Beijing 100031

ABSTRACT: Geometry structure of molten carbonate fuel cell (MCFC) bi-polar plate is important to the performance. In this paper, a three-dimensional MCFC model is developed by combining the flow, heat transfer, species transfer, charge transfer and electro-chemical reaction, and model results well agree with experimental data in literature. Using this model, the effect of channel width/rib width ratio on fuel cell performance is studied. Research results show that: the increase of channel width can reduce the mass transfer loss and improve the MCFC performance; however, with consideration of the contact resistance between rib and steel supporting plate, the decrease of rib width can increase ohmic loss and then decrease the cell performance, thus the optimal channel width/rib width ratio is about 1; the in-plate current under channel is mainly at the steel supporting plate which has a very high conductivity, so the ohmic loss cased by this current is very small. These conclusions are useful to the design of bi-polar plate of MCFC.

KEY WORDS: molten carbonate fuel cell; numerical model; bi-polar plate; channel width; rib width

摘要: 熔融碳酸盐燃料电池 (molten carbonate fuel cell, MCFC) 双极板几何结构对其性能有重要影响。首先耦合流动、传热、传质、电荷传输与电化学反应等建立了 MCFC 三维数值模型,数值模型结果与文献实验结果吻合较好。

采用数值模型,研究了流道宽/脊宽比例对电池输出性能 的影响规律。研究发现:增大流道宽度有利于降低脊下传 质损失,提高电池性能;不过在考虑脊与金属支撑板间接 触电阻时,较小的脊宽度会导致欧姆损失增大,进而降低 电池性能,此时流道宽/脊宽比例在1附近时性能最好; 流道下侧向电流主要集中在高电导率的金属支撑板内,因 此侧向电流引起的欧姆损失较小。这些研究结果对 MCFC 双极板优化设计具有较好的指导意义。

关键词: 熔融碳酸盐燃料电池; 数值模拟; 双极板; 流道宽; 脊宽

引言

熔融碳酸盐燃料电池 (molten carbonate fuel cell, MCFC) 是一种能够将燃料的化学能直接转化 为电能的发电装置,具有电化学转化效率高,不需 要贵金属作为电极催化剂,燃料适应性广,可进行 CO_2 捕集降低污染物排放等优点^[1-2]。MCFC工作 温度高 (约650℃),高温排气可用于燃气轮机联合 发电,余热品质高,系统发电效率和能量效率高, 是目前最有潜力应用于 MW级分布式发电系统的 燃料电池之一^[3]。

熔融碳酸盐燃料电池一般由双极板、阳极、阴极和电解质隔膜组成,如图1为一般 MCFC 典型特征单元(单流道结构)结构示意图,为了增加电极与电解质隔膜的机械强度,通常在电极2侧增加一

基金项目: 中国华能集团有限公司科技项目 (HNKJ21-H17)。 Science and Technology Program of China Huaneng Group Co., Ltd. (HNKJ21-H17).

层金属支撑板。双极板为 MCFC 中的一个重要部件,其不仅起到收集电流、连通电池的作用,还是电池内气体传输与分配的重要通道,因此双极板的结构设计对电池性能有重要影响^[4]。

图 1 熔融碳酸盐燃料电池特征单元结构简图 Fig. 1 Schematic diagram of molten carbonate fuel cell repeating unit

双极板采用脊和流道结构,脊主要起到支撑电 池和收集电流作用,流道主要起到传输和分配气 体的作用。在双极板与电极(或金属支撑板)接触 面上,流道与脊的宽度决定其与电极(或金属支撑 板)的接触面积,进而影响气体传输和电流传输面 积,最终影响电池输出性能,因此双极板上流道宽 度与脊宽度需要优化到合适比例,以使电池达到最 佳工作性能。

针对平板式燃料电池流道宽/脊宽对电池性能 的影响, 文献中有许多研究。Lin ZJ等^[5]研究了脊 几何结构对固体氧化物燃料电池 (SOFC)浓差损失 的影响,并指出脊宽应该占总宽度的1/3到2/3之 间; Kong W等^[6-7]优化了平板式 SOFC流场几何 结构和阴极支撑型 SOFC脊的几何结构; Yoon Y. G.等^[8]研究了流道宽/脊宽对质子交换膜燃料电池 (PEMFC)性能的影响,并指出较小的脊宽有助于 提高电池性能; Lee, D. J.等^[9]研究了流道高和宽 对电池的影响; Lin L等^[10]和 Peck, D. H.等^[11]优 化了蛇形流场流道几何结构; Grigoriev S. A.等^[12] 优化了高温 PEMFC 流场几何结构,并指出流道宽 占总宽度约为30%时电池性能最好; Kerkoub, Y. 等^[13]分别研究了蛇形、交指和平行流场中流道宽 / 脊宽对 PEMFC 电池性能的影响规律,结果表明对 于3种流场结构,较小的流道宽度可以显著提高电 池性能。

然而, 文献中尚未有针对 MCFC流道宽 / 脊宽 对电池性能的研究, 而 SOFC或 PEMFC的研究结 果并不能直接适用于 MCFC, 这是因为 MCFC与 SOFC和 PEMFC具有很大不同。例如: MCFC的 电池功率要远小于 SOFC和 PEMFC, 其典型功率 约为0.1W/cm², 远小于 PEMFC的0.6W/cm²^[14], 脊处欧姆损失较小; MCFC 阴极侧需通入一定比例 CO₂, 从而增大电池阴极侧浓差损失。因此本文针 对 MCFC建立数值模型, 研究流道宽 / 脊宽比例对 电池性能的影响规律, 为 MCFC流场优化设计提 供依据。

1 模型建立与验证

1.1 模型假设

由于 MCFC 物理过程和电化学反应比较复杂,各种参数相互耦合,为了使模拟计算更加方便可行,根据 MCFC 实际运行过程中的结构、运行状态以及计算条件的限制,对计算模型做出了如下假设和简化处理:

1)由于 MCFC工作温度在650℃左右,水以 水蒸汽形式存在,气体为层流流动,混合气体均按 照理想气体处理,流体在出口处充分发展;

 2)多孔介质内,气体与多孔介质处于热平 衡,电池多孔电极均为均相结构;

3)将多孔金属支撑板当作多孔介质处理,其 孔隙率根据开孔率确定。此外金属支撑板为冲孔 板,气体传输存在方向性,因此其渗透率为各相异 性。不过对于电流的传输假设其为各向同性;

4) 假设电化学反应仅仅发生在电极 /电解质 界面上;

5)忽略电池内部的辐射换热;

6)忽略电池各部件的接触电阻。

基于上述简化和假设,对于采用平行流场的平 板式 MCFC,其电池内部物理场具有可重复性, 因此本次建模选取单个流道;同时考虑到单个流道 物理场沿流道中心切面的对称性,数值模型选取一 半进行计算。图1所示为最终几何模型的横切面, 各部件具体几何尺寸见表1。

1.2 模型控制方程

MCFC内部耦合了流动、传热、组分传输、 电荷传输和电化学反应等多个物理过程,因此 MCFC的数值模型控制方程主要包括质量守恒、动 量守恒、组分传输、能量守恒、电荷守恒和电化学 反应方程^[15-16]。

表 1 MCFC 数值模型各部件几何尺寸 Table 1 Geometry parameters of MCFC components

MCFC 部件	几何尺寸
电解质隔膜厚度 /mm	0.9
阳极厚度 /mm	0.7
阴极厚度 /mm	0.6
金属支撑板厚度 /mm	0.6
流道宽 (基础)/mm	16
流道高 /mm	2
流道长 /mm	100
脊宽 (基础)/mm	4
集流板厚度 /mm	7

$$\nabla(\varepsilon \rho \vec{u}) = S_m \tag{1}$$

式中: ρ 为混合气体密度; \vec{u} 为速度矢量; ε 为多 孔介质孔隙率,对于流道其值为1; S_m 为质量源 项,在反应界面上其值为各组分质量源项之和, 即: $S_m = \Sigma S_i$ 。

2)动量守恒方程。

 $\nabla(\varepsilon\rho \vec{u}\vec{u}) = -\varepsilon\nabla p + \nabla(\varepsilon\mu_{\text{eff}}\nabla u) + S_u \qquad (2)$ 式中: p为静压强; μ_{eff} 为混合气体有效粘度; S_u 为 多孔介质内动量损失源项, $S_u = -\frac{\mu_{\text{eff}}}{\tau}\varepsilon^2 \vec{u}$ 。

3)组份传输方程。

$$\nabla \cdot (\varepsilon \rho Y_i \vec{u}) = \nabla \cdot (\rho D_{i,\text{eff}} \nabla Y_i) + S_i \tag{3}$$

式中: Y_i为组分 *i*质量分数; D_{*i*,eff}为有效扩散系数; S_{*i*}为组分质量源项,各组分计算分别如下。

阳极氢气组分源项:

$$S_{\rm H_2} = -\frac{M_{\rm w, H_2}}{2\rm F} R_{\rm an}$$
 (4)

阳极二氧化碳组分源项:

$$S_{\rm CO_2} = -\frac{M_{w,\rm CO_2}}{2\rm F}R_{\rm an}$$
 (5)

阳极水蒸气组分源项:

$$S_{\rm H_2O} = -\frac{M_{w,\rm H_2O}}{2\rm F} R_{\rm an}$$
(6)

阴极氧气组分源项:

$$S_{\rm O_2} = -\frac{M_{\rm w,O_2}}{4\rm F}R_{\rm ca}$$
(7)

阴极二氧化碳组分源项:

$$S_{\rm CO_2} = -\frac{M_{\rm w, CO_2}}{2\rm F}R_{\rm ca}$$
 (8)

式中: R_{an} 或 R_{ca} 为阳极或阴极反应电流密度; M_w 为组分摩尔质量。

4)能力守恒方程。

$$\nabla \cdot [\vec{u}(\rho E + p)] = \nabla \cdot [k_{\text{eff}} \nabla T - \sum_{i} h_{i} \vec{J}_{i}] + S_{h} \qquad (9)$$

式中: E为内能; k_{eff} 为有效热导率,对于多孔介质 $k_{eff}=\epsilon k_g+(1-\epsilon)k_s$, k_g 和 k_s 分别为气体和固体的热导 率; S_h 为热源项,其计算公式为

$$S_h = i(h_{\rm rev} + \eta_{\rm act} + iR_{\rm ohmic}) \tag{10}$$

式中: h_{rev} 为电化学反应可逆热; η_{act} 为活化过电势; R_{ohmic} 为欧姆电阻。对于非电化学反应区,只存在欧姆热,即前两项为0。

5) 电荷传输方程。

$$\nabla \cdot (\boldsymbol{\sigma}_{\mathrm{I}} \nabla \boldsymbol{\phi}_{\mathrm{I}}) = S_e \tag{11}$$

$$\nabla \cdot (\sigma_{\rm s} \nabla \phi_{\rm s}) = S_e \tag{12}$$

式中: σ为电导率; φ为静电势; 下标 I和 S分别表 示离子和电子; S_e为电化学反应生成电流。对于多 孔介质, 其有效电导率与孔隙率和曲折因子有关, 其具体计算方法为

$$\sigma_{\rm eff} = \sigma \frac{1 - \varepsilon}{\tau} \tag{13}$$

式中 τ为曲折因子。

6) 电化学反应方程。

对于采用氢气为燃料的 MCFC,其阳极、阴极分别发生如下电化学反应:

阳极:

$$H_2 + CO_3^{2-} \rightarrow H_2O + CO_2 + 2e^-$$
 (14)

阴极:

$$CO_2 + 1/2O_2 + 2e^- \rightarrow CO_3^{2-}$$
 (15)

本模型假设电化学反应仅仅发生在电极/电解 质界面,电化学反应生成电流密度可采由Butler-Volmer方程计算,即:

$$i_{gen} = A_{acl} i_0 \left(\frac{c_i}{c_{i,ref}}\right)^{\gamma_i} \left\{ \exp\left(\frac{\alpha R T}{nF} \eta_{acl}\right) - \exp\left[\frac{(1-\alpha)R T}{nF} \eta_{acl}\right] \right\}$$
(16)

式中: i_{gen} 为电化学反应生成或消耗的电流; A_{act} 为反应活性面积; i_0 为交换电流密度; $c_{i,ref}$ 为组分的参考浓度; γ 为反应浓度的指数因子; α 为传输系数,取值为0.5; R为通用气体常数; F为法拉第常数。

活化过电势 η_{act} 通常可由下式得到:

$$\eta_{\rm act} = \left| \phi_{\rm S} - \phi_{\rm I} \right| - E_{\rm rev} \tag{17}$$

式中 E_{rev}为电极可逆电势,对于阳极和阴极分别为

$$E_{\rm rev,an} = -\frac{{\rm R}T}{n{\rm F}} \ln(\frac{p_{{\rm H}_2}}{p_{{\rm H}_2{\rm O}}p_{{\rm CO}_2}})$$
(18)

$$E_{\rm rev,ca} = E_0 + \frac{RT}{nF} \ln(\sqrt{\frac{p_{\rm O_2}}{p_0}} \frac{p_{\rm CO_2}}{p_0})$$
(19)

式中: *p*_i为组分分压; *E*₀为标准电势^[17],可由下式 计算。

$$E_0 = 1.253 - 0.00024516 \times T \tag{20}$$

2 MCFC 流道宽 / 脊宽比例对电池性能影 响规律

2.1 MCFC流道宽 / 脊宽比例的选取

本文采用上述数值模型研究 MCFC 流道宽 / 脊 宽比例对电池性能的影响规律,以确定双极板最佳 几何尺寸。

基于研究团队前期研究和电池设计,本文选 取6组不同流道宽/脊宽比例进行研究,具体尺寸 见表2所示。在比例选取时,确保流道与脊的总宽 度为20mm不变,由此保证电池的工作面积不变。 同时由于流道宽度变化会引起气体流通截面积的变 化,进而影响气体流速与组分分配,因此本文采用 给定入口质量流量的方法,确保电池在通入相同反 应气体质量的情况下工作。

 Table 2 Parameters of bi-polar plates with different channel/rib width ratio

-				
	结构序号	流道宽 /mm	脊宽 /mm	流道宽 / 脊宽比例
	结构 1	16	4	4
	结构 2	14	6	2.3
	结构 3	12	8	1.5
	结构 4	10	10	1
	结构 5	8	12	0.6667

2.2 流道宽 / 脊宽比例对电池性能影响规律

不同流道宽/脊宽比例时,电池的输出特性曲 线结果如图2所示。由图可知,流道宽/脊宽比例 会对电池输出特性具有一定影响,随着流道宽度降 低电池性能会逐渐下降,且电池工作电压越低,性 能下降越明显;流道宽/脊宽比例为4/1时,电池 的性能最好。这些结果表明脊变窄引起的欧姆损失 增大远小于流道变窄引起的浓差损失。

图3为不同气体流量时,电池在0.7V的输出 电流密度随流道宽/脊宽比例的变化曲线。由图可 知,电池输出电流密度随流道宽度增大而增大,且 增大幅度逐渐减小;当气体流量降低时,电流密 度随流道宽/脊宽比例变化的规律并没有明显的变 化,只是整体向下略有平移,这一结果表明由流道 宽度变化引起的气体流通面积的改变对电池性能影 响很小,而电池性能的变化主要是由于脊下传质阻 力引起的。

此外由图2和图3可知,流道宽/脊宽对电池 性能随有一定影响,但电池性能总体变化较小,这 一结果表明脊下传质损失和流道下的欧姆损失较 小,这主要时因为 MCFC 的电流密度较小。

图 2 不同流道宽 / 脊宽比例时,电池的输出特性曲线 Fig. 2 Performance curves of fuel cells in different channel width/rib width ratios

2.3 接触电阻对结果的影响

不同流道宽/脊宽比例时,电池的输出特性曲 线结果如图2。

上述结果是在未考虑电池各部件间的接触电 阻情况得到的,然而实际电池中,双极板与电极和 金属支撑板间的接触电阻远大于其体相电阻,例如 SOFC金属双极板与电极的接触电阻实验表明其接触 电阻在30~50mΩ · cm²(接触压力大于0.07Mpa)^[22]。 虽然目前尚未有关于 MCFC 双极板与金属支撑板间 接触电阻的数据,但 MCFC 由于存在高温熔盐腐蚀 作用,其接触电阻应与 SOFC 在一个量级或更高。 显然这一接触电阻远大于金属的本体电阻 (本文不 锈钢电阻率约为0.13mΩ · cm²),同时脊宽对脊和 金属支撑板间接触电阻有重要影响,因此在流道宽 /脊宽比例优化时,应考虑脊与金属支撑板间接触 电阻。

本文假设脊与金属支撑板间接触电阻为 45 mΩ·cm²,计算结果如图4所示。当考虑脊与 金属支撑板间接触电阻时,电流密度随流道宽/脊 宽比例增大先增加后减小;电流密度在流道宽/脊 宽比例为1时达到最大。这一趋势表明:当考虑接 触电阻时,随着流道宽度增大,脊与金属支撑板间 接触电阻增大,而此时接触电阻与脊下传质损失在 一个数量级,因此电池输出电流密度在比例为1时 达到最大。

图 4 考虑脊与金属支撑板间接触电阻时,电池输出电流 密度随流道宽 / 脊宽比例变化曲线

Fig. 4 Variation of fuel cell output current density to channel width/rib width ratio, when the contact resistance between rib and steel supporting plate is considered

本文上述结果是在一个假设接触电阻值下得到 的,不过脊与金属支撑板间接触电阻对流道宽/脊 宽比例的影响规律可适用于实际电池。同时,在实 际双极板设计优化中,需测量脊与金属板间接触电 阻,然后再基于此接触电阻优化流道宽与脊宽。

2.4 流道宽 / 脊宽比例对组分和电荷传输的影响

由以上结果可知,MCFC流道宽/脊宽比例 对电池性能的影响规律与文献中针对 PEMFC和 SOFC并不相同,例如:Kerkoub,Y.等^[13]针对 PEMFC研究表明,较小的流道宽度有利于提高电 池性能;Lin ZJ等^[5]针对 SOFC的研究表明,脊宽 占总宽度1/3~2/3之间时,电池性能最佳。为更好 分析 MCFC 流道宽 / 脊宽比例对电池性能的影响, 有必要分析脊对电池内组分和电荷传输的影响。

图5为不同流道宽/脊宽时,电池流道中心横 截面上x方向电流密度分布云图。由图可以看出在 金属支撑板层,存在较大的x方向侧向电流,且侧 向电流随着脊宽度降低而逐渐增大。同时,图中 XY平面上的电流流线可以看出,电流从阳极流场 板,经阳极脊汇集后再分配到阳极金属板和阳极平 面上,而阴极生成电流由阴极和阴极金属板和阳极平 面上,再通过阴极脊传输到阴极双极板上。由 于金属支撑板电导率远大于电极,因此x方向侧向 电流主要集中在金属支撑板内;同时 MCFC 的电 流密度较小,x方向侧向电流并不大,其引起的欧 姆损失也较小。

图 5 不同流道宽 / 脊宽比例时, 电池横截面上 x 方向电流 密度分布云图 (A×m⁻²)

图6为不同流道宽/脊宽时,电池流道中心横 截面上组分分布云图。由图中可以看到:脊下反应 物浓度略小于流道下;且随脊厚度增大,其差距会 逐渐增大,由此产生较大的浓差损失。

总结上述结果可知: MCFC 脊和流道下存在侧 向传输电流,侧向电流随脊宽度增大而减小,不过 由于侧向电流较小,且主要集中在电导率较高的金 属支撑板内,因此引起欧姆损失较小;脊下组分浓 度略小于流道下,且随脊宽度增大,其差距迅速增加,使电池浓差损失增大。

3 结论

本文建立了平板式 MCFC 三维数值模型,并 与文献实验数据对比,验证了模型结果的有效性。 采用数值模型本文研究了 MCFC 流道宽 / 脊宽比例 对电池性能的影响规律,并得到了如下结论:

1)当不考虑接触电阻时,电池性能随流道宽
 /脊宽比例增大而提高,较大流道宽度可提高电池
 输出性能,表明此时脊下的传质损失要大于流道下
 侧向电流引起的欧姆损失;

2)当假定脊与金属支撑板接触电阻为 45 mΩ·cm²时,随流道宽/脊宽比例增大,电池 性能先增加、后降低,在比例为1时电池性能最 好;表明此时接触电阻导致的欧姆损失与脊下传质 损失在一个量级,需综合考虑;

3)电池流道下 x方向侧向电流主要集中在金 属支撑板中,不过由于金属的高电导率,其欧姆损 失并不明显;

4)电池脊下反应物浓度略低于流道下,且随 脊宽度增大,其差距迅速增加;

MCFC结果与文献针对 PEMFC和 SOFC结果 不同,这是因为 MCFC电流密度较小,流道下侧 向电流引起的欧姆损失较小;同时气体在高温下有 较高的扩散系数,脊下气体浓差损失也较小。

参考文献

- CIGOLOTTI V, GENOVESE M, FRAGIACOMO P. Comprehensive review on fuel cell technology for stationary applications as sustainable and efficient poly-generation energy systems [J]. Energies, 2021, 14, 4963.
- [2] SUZANNE Ferguson, ANTHONY Tarrant. Molten carbonate fuel cells for 90% post combustion CO_2 capture from a new build CCGT [J]. Front. Energy Res. , 2021, 219.
- [3] BACCIOLI Andrea, LIPONI Angelica, MILEWSKI Jaroslaw, et al. Hybridization of an internal combustion engine with a molten carbonate fuel cell for marine applications [J]. Applied Energy, 2021, 298.
- [4] LI Xianguo, IMRAN Sabir. Review of bipolar plates in PEM fuel cells: Flow-field designs [J]. International Journal of Hydrogen Energy, 2004, 30(4): 359–371.
- [5] LIN Zijing, STEVENSON J W, KHALEEL M A . The effect of interconnect rib size on the fuel cell concentration

polarization in planar SOFCs [J]. Journal of Power Sources, 2003, 117(1): 92-97.

- [6] WEI Kong, LI Jiayu, LIU Shixue, et al. The influence of interconnect ribs on the performance of planar solid oxide fuel cell and formulae for optimal rib sizes [J]. Journal of Power Sources, 2012, 204: 106–115.
- [7] WEI Kong, GAO Xiang, LIUShixue, et al. Optimization of the Interconnect Ribs for a Cathode–Supported Solid Oxide Fuel Cell [J]. Energies, 2014, 7(1): 295–313.
- [8] YOON YoungGi, LEE WonYong, PARK GuGon, et al.Effects of channel and rib widths of flow field plates on the performance of a PEMFC [J]. International Journal of Hydrogen Energy, 2005, 30(12): 1363-1366.
- [9] WANG Xiaodong, HUANG Yuxian, CHENG Chinhsiang, et al. Flow field optimization for proton exchange membrane fuel cells with varying channel heights and widths [J]. Electrochimica Acta, 2009, 54(23): 5522-5530.
- [10] LIN Lin, ZHANG Xinxin, FENG Huting, et al. Optimization of a serpentine flow field with variable channel heights and widths for PEM fuel cells [J]. Science China–Technological Sciences, 2010, 53(2): 453–460.
- [11] PARK Youngchul, PURUSHOTHAMA Chippar, SKIM angkyung, et al. Effects of serpentine flow-field designs with different channel and rib widths on the performance of a direct methanol fuel cell [J]. Journal of Power Sources, 2012, 205 32-47.
- [12] GRIGORIEV S A. Numerical optimization of bipolar plates and gas diffusion electrodes for PBI-based PEM fuel cells [J]. International Journal of Hydrogen Energy, 2013, 38(20): 8557-8567.
- [13] YOUCEF Kerkoub, AHMED Benzaoui, FADILA Haddad, et al. Channel to rib width ratio influence with various flow field designs on performance of PEM fuel cell [J]. Energy Conversion and Management, 2018, 174 260–275.
- [14] LI Ang, SONG Ce, LIN Zijing . A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks [J]. Applied Energy, 2017, 190 1234–1244.
- [15] SHEN Shuanglin, ZHANG Xiaokun, ZHENG Keqing, et al. Wall-function method used to simplify the solid oxide fuel cell model [J]. Journal of Power Sources, 2021510.
- [16] MENG Ni. Modeling of SOFC running on partially prereformed gas mixture [J]. International Journal of Hydrogen Energy, 2012, 37(2): 1731–1745.

- [17] ZHANG Zhonggang, YUE Danting, HE Changrong, et al.Three-dimensional CFD modeling of transport phenomena in anode-supported planar SOFCs [J]. Heat and Mass Transfer, 2014, 50(11): 1575-1586.
- [18] MORIN F J. Electrical properties of NiO [J]. Physical Review, 1954, 93(6): 1199-1204.
- [19] JAROSLAW Milewski, GABRIELE Discepoli, UMBERTO Desideri. Modeling the performance of MCFC for various fuel and oxidant compositions [J]. International Journal of Hydrogen Energy, 2014, 39(22): 11713-11721.
- [20] 何亚飞. 熔融碳酸盐燃料电池内流动过程数值分析
 [D]. 哈尔滨:哈尔滨工业大学,2008.
 HE Yafei. Numerical analysis of flow process in a molten

carbonate fuel cell[D]. Harbin: Harbin Institute of

Technology, 2008.

[21] TAPOBRATA Dey, DEBANAND Singdeo, MANASWITA Bose, et al. Study of contact resistance at the electrode – interconnect interfaces in planar type Solid Oxide Fuel Cells [J]. Journal of Power Sources, 2013: 290–298.

收稿日期: 2023-5-24。 作者简介:

张瑞云(1985),男,工学硕士,清华大 学 2020 级创新领军工程在读博士生,高级 工程师,中国华能集团清洁能源技术研究 院有限公司燃料电池项目开发部总工程 师,研究方向为氢能与高温燃料电池发电 技术。E-mail: ry_zhang1@qny.chng.com.cn。

瓜畑ム