大疆机场3与 Matrice 4系列无人机电力巡检技术 与应用研究

吴佳松, 余尚泽, 詹仕钰, 张鑫诚, 唐磊 武汉学院信息工程学院, 湖北 武汉 430212 DOI: 10.61369/ME.2024070025

随着电网智能化与无人机技术的不断融合,大疆创新推出了新一代电力巡检解决方案首款可车载部署的无人值守机场 平台"机场3"(DJI Dock 3)以及 Matrice 4系列多传感智能无人机。本文首先介绍机场3与 Matrice 4D/4TD无人机的 硬件构成及关键性能,包括全新的图传与定位系统;然后分析其多种部署模式,如固定站点与车载机库的组合;接着阐 述数据通信与图传架构 (包括 OcuSync 4+远距传输与 D-RTK 3中继站);并重点论述 Matrice 4T在 AI目标识别和红 外热成像测温方面的能力;结合典型电力巡检场景,探讨系统在缺陷检测、设备监测等方面的应用;最后分析该系统的 优势与现存挑战,例如高效自动化巡检能力与传输距离、车载作业范围等限制。研究表明,Airport 3+Matrice 4组合 通过无人值守平台、自动化航线与智能感知,实现了电网巡检的高效便捷,但仍需解决通信覆盖、法规规范等问题。

大疆机场3; Matrice4系列; 电力巡检; 无人值守平台; Al识别; 热成像; 图传系统

Research on Power Inspection Technology and Application of DJI Airport 3 and Matrice 4 Series Unmanned Aerial Vehicles

Wu Jiasong . Yu Shangze . Zhan Shivu, Zhang Xincheng, Tang Lei Wuhan College School of Information Engineering, Wuhan, Hubei 430212

Abstract: With the continuous integration of power grid intelligence and unmanned aerial vehicle (UAV) technology, DJI Innovation has launched the first vehicle-deployable unmanned airport platform "Airport 3" (DJI Dock 3) for the new generation of power inspection solutions, as well as the Matrice 4 series multi-sensor intelligent UAVs. This paper first introduces the hardware composition and key performances of Airport-3 and Matrice 4D/4TD unmanned aerial vehicles, including the brand-new image transmission and positioning system; Then analyze its various deployment modes, such as the combination of fixed sites and vehicle-mounted hangars; Then elaborate on the data communication and image transmission architecture (including OcuSync 4+ long-distance transmission and D-RTK 3 relay station); And focus on discussing the capabilities of Matrice 4T in AI target recognition and infrared thermal imaging temperature measurement; Combined with typical power inspection scenarios, this paper discusses the application of the system in defect detection, equipment monitoring, etc. Finally, analyze the advantages and existing challenges of the system, such as the limitations of efficient automated inspection capabilities and transmission distances, as well as the range of on-board operations. Studies show that the Airport 3+Matrice 4 combination has achieved efficient and convenient power grid inspection through unmanned platforms, automated routes and intelligent perception. However, problems such as communication coverage and regulatory norms still need to be solved.

DJI Airport 3; Matrice4 series; power inspection; unattended platform; Al recognition; thermal imaging; image transmission system

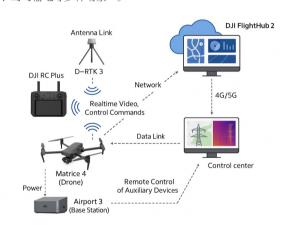
引言

近年来,随着电力系统规模扩张与智能化升级,对输电线路和变电设备的巡检提出了更高的效率和精度要求。传统人工巡检周期

依托大学生科研创新团队: 批准号: XST202404 智空安防团队, XST202406 三维机器视觉与逆向工程检测创新团队, XST202310 人工智能研究团队, 202413634001 智影空 一轻量型共轴无人机,202413634008S无人机起飞空域管理系统——自动生成姿态通行令牌,202413634009基于5G--北斗的智能温湿度监测装置,XCDC202404蓝航 守望者 - 北斗集成水质监测技术系统,XCDC202436基于北斗卫星的近海水质智能监测养殖系统

长、存在风险,推动无人机智能化巡检方案成为行业热点。大疆新一代电力巡检系统以全无人值守机场和多传感无人机为核心,首次实现了车载部署,适应了复杂场景下的连续长距巡检 12。本文在分析《大疆无人机遥感测绘技术在工程测绘中的应用探究》写作风格的基础上,对机场3+Matrice 4技术架构与应用案例进行系统梳理,期望为电力行业无人化巡检提供参考 [1]。

一、产品技术构成


图1所示为大疆机场3基地与 Matrice 4D无人机的搭载场景。

Airport 3(DJI Dock 3)作为无人值守作业站,具备 IP56 防护 等级及-30℃至50℃宽温工作范围,可全天候连续作业34。站体 内置自动起降、充电模块,并采用业界版 OcuSync4+图传,无遮 挡条件下图传距离可达25公里。机场3支持与 D-RTK3多功能站 配合使用,后者可作为RTK基准站或空中中继部署于高处,大 幅提高 RTK 定位和图传信号的抗遮挡能力,解决复杂环境下的 通信与定位问题56。Matrice 4D和4TD无人机为高性能四旋翼 系统,配备与 Matrice 4系列同级的光电载荷:包括24mm广角摄 像头(4/3 CMOS, 20MP,机械快门)用于全景巡视; 70mm(1/1.3 CMOS,48MP)与168mm(1/1.5 CMOS,48MP)长中焦镜头,可 在10米处识别输电线缆螺栓细节、250米外捕捉工器具信息7; 全向线激光测距仪测距范围达1800米,可实时标注目标距离。 Matrice4T 另加装了640x512像素(超分辨模式可达1280x1024) 的非制冷氧化钒热成像相机 89, 并配备前视近红外补光灯 (有 效照射距离100米) 9和IR-Cut滤光片,实现昼夜连续成像。 热成像模块支持点测温和区域测温,高增益模式下测温精度达 ±2° C(或 ±2%) 10, 可检测 -20° C~150° C范围内的热点。 Matrice4系列内置6颗低照度鱼眼镜头与红外三维测距传感器, 用于构建全向避障体系 1112。上述无人机配备 DJI RC Plus 2工 业遥控器,可独立操控并具备空中信号中继功能1。总体来看,大 疆新一代机场3+Matrice4D/4TD系统通过高防护全自动基地与多 源传感无人机的组合,实现了电力巡检作业的自动化与精细化需 求 🗓。

二、部署模式

感无人机的组合,实现了电力巡检作业的自动化与精细化需求。等高处实现24小时无人值守;车载部署模式是其最大创新点

之一,可将机场3机箱固定于巡线车辆上随车移动133。车载部署配合专用云台固定装置,可在行驶中保护基座设备、加快应急调度响应,同时覆盖长距离线路巡检需求13。此外,系统支持一机多库灵活切换:一架 Matrice4 无人机可挂靠多个机场并互为备用,多机场协同飞行任务;机场之间可通过多机场任务配置实现分散式区域管理 14。机场 3 支持"开盖即飞"快速起飞,进一步提高调度效率3。在部署过程中,借助大疆司空2(FlightHub2)无人机任务管理云平台,可对所有机场、无人机和飞行任务进行集中规划与实时监控 1516。例如,运营人员可在 FlightHub 2 上预设巡检航线并下发至指定机场,一线人员则通过 Pilot 2 App监视航路覆盖情况和 AI 识别结果,实现远程协同。借助这种灵活部署模式,大疆机场3与 Matrice4 系统能够覆盖包括城乡电网、远郊线路、岛屿输电等多种场景^[3]。

三、数据通信与图传系统

为保障大疆无人机系统在长距离电力巡检中的稳定通信与厘米级定位能力,系统配备了三层次的通信架构:遥控图传链路、 地面中继与云端调度平台。

(一)第一层: 遥控与图传链路(OcuSync 4+)

Matrice 4系列无人机与 DJI RC Plus 2遥控器之间采用了 OcuSync 4+ (行业版)图传协议,理论最大有效图传距离为 25 km,具备低延迟与高带宽 (最大 1080p@60fps)传输能力。其链路预算可由以下公式近似描述:

Pr = Pt + Gt + Gr - Lfs - Lm

其中:

- Pr: 接收端功率 (dBm)
- Pt: 发射功率 (dBm)
- Gt, Gr: 发射 / 接收天线增益 (dBi)
- Lfs: 自由空间路径损耗 (dB), 按公式: Lfs = 20log10(d)

+ 20log10(f) + 32.45

d为距离(km),f为频率(MHz)

- Lm: 多径损耗及其他边缘效应(dB)

该系统在2.4 GHz / 5.8 GHz 双频模式下,可在无遮挡环境维持稳定链路,对复杂地形环境具有一定穿透力。

(二) 第二层: D-RTK 3多功能站(基准站与中继模式)

当 D-RTK 3作为固定基准站使用时,配合 GNSS(全球导航 卫星系统)可实现厘米级定位精度。其精度估算模型如下:

 $\sigma_RTK = sqrt(\sigma_base^2 + \sigma_rover^2 + \sigma_link^2)$ 其中:

- σ RTK: RTK 总体误差

- σ_{base} : 基准站观测误差

 $-\sigma_{rover}$: 移动站观测误差

- σ_link: 基站与移动站数据链误差

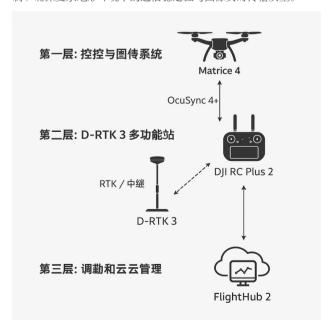
在复杂环境下,如城市高楼密集区或山区遮挡区,D-RTK 3 可切换为中继模式,部署于高空平台(楼顶或铁塔顶部),用于增强无人机与地面站的信号穿透能力^[4]。

(三)第三层:调度与云端管理(FlightHub 2平台)

系统部署 FlightHub 2云平台作为全局调度与数据汇聚中心, 支持图传与定位数据上云存储、AI检测结果远程查看、航线、任 务、状态图层可视化以及附件设备远程控制。

该平台与RC Plus 2遥控器配合,可建立空中中继网络,即一架 Matrice 4可临时悬停并转发其他作业无人机信号,构建局部Mesh中继拓扑。

(四)综合通信保障模型


整个系统通信可靠性的理论信噪比(SNR)模型为:

SNR = Pr / (N0 * B)

其中: - NO: 噪声功率谱密度 (W/Hz)

- B: 通信带宽(Hz)

系统中通过链路冗余(多频切换、中继补强、RTK缓存机制)确保复杂地形环境下的通信稳定性与图像实时传输质量。

四、AI识别与热成像测温能力

Matrice4系列在智能识别和温度检测方面具备显著升级。其 基于高性能机载计算平台的"智能检测"功能,可实时识别并定 位关键目标。内置的 AI模型能够检测并标注人、车、船等目标, 同时支持用户自行训练和上传第三方算法模型 12。固件升级后, 智能检测模块可调整识别置信度阈值,识别目标数量和精度均有 提升 12。结合飞行器的高清可见光传感器群,巡检时可自动锁 定并跟踪电网设备缺陷。例如, Matrice 4T配备三个4800万像 素相机,拍摄分辨率大幅提升17。实测表明,相同拍摄距离下, 其可见光镜头捕捉的细节优于上一代机型,配合缺陷智能算法, 可精准识别绝缘子破损、导线松脱等隐患17。同时, Matrice 4T的红外热成像相机默认开启超分辨率模式,分辨率提升至 1280x102418;每台设备出厂前完成了测温精度标定,并内置温度 传感器实时校正测量结果 18.测温误差可控制在 ±2° C以内 10。 这使得系统能够实时监测设备温度,快速发现如变压器热点、断 路器过热等问题,并生成高精度热图和温度报告。上述 AI识别与 热成像能力,为长距离巡线中的目标检测与状态评估提供了强大 支撑,显著提高了巡检的自动化与准确度 1211^[5]。

五、电力巡检具体应用案例

实际应用表明, Airport 3+Matrice 4系统可显著提升巡检效 率并降低风险。在典型的输电线路巡检中, 无人机可沿预定航路 执行夜间巡检,利用热成像探测高压设备局部过热。由于四旋翼 机身折叠便携,可在偏远林区快速被车载运输至线路附近,通过 Airport 3自动起降完成长距离"点对点"巡检,减少人员进入高 压区次数。以铁塔线路为例, Matrice 4T可在50米高塔下方释 放无人机,70mm和168mm长焦相机从10米至250米范围内精 细拍摄铁塔结构与输电导线,能够识别细小螺栓裂纹和垂线上绑 定的塑料绳索等细节 7。同时,热成像模式可捕捉绝缘子表面裂 痕旁的温度异常,实现高精度缺陷定位。在变电站巡检场景,航 线规划功能保证全景覆盖, Matrice 4E的0.5秒连拍和 Smart 3D Capture 可以快速生成站区精细化三维模型 19。无人机搭载的 Al 算法可对巡检画面中的设备仪表、标识等目标自动识别并标记, 大幅减轻人工判图负担。例如,在潮湿环境或夜间拍摄时,夜视 能力强的鱼眼镜头可辅助完成自动避障,确保飞行安全11。多次 实测证明, Matrice 4T在"画质、效率、安全"三方面相较上一 代机型有显著提升,使其成为电网巡检的"全能之眼",推动智 能化巡检新模式的建立 2011[6-8]。

六、系统架构

系统总体架构如图示所示,通过硬件融合和软件平台将各单元紧密连接。Airport 3(基地站)与 Matrice 4无人机构成前端工作单元,无人机完成图像采集、AI识别与温度测量。无人机与遥控器之间通过 OcuSync 4+图传链路交换实时视频与控制指令;地面

可配置 D-RTK 3中继站 (天线链路)增强此链路。后端部署有 DJI 司空 2(FlightHub 2)云平台与控制中心,用于任务规划、数据融合和远程监控 1516。具体架构特点包括:无人机内部集成高算力飞控,可在边控/云端算法指令下执行智能任务;基站侧 D-RTK 3 既做 RTK基准站也做信号中继;飞行和作业数据经4G/5G 网络传回地面指挥中心,运营人员可通过司空 2界面监视所有机场和无人机的态势 [8]。

人工参与压力: 多机场编队和任务预案极大提高巡检覆盖率 115。 信息化与智能化水平高: AI目标检测、实时热成像与激光测距为 巡检数据提供了精细化分析能力,促进了问题自动报警和数据可 视化管理1217。性能提升与可靠性。Matrice 4系列在图像清晰 度、低光态势感知与抗风性能方面均比上一代有大幅升级(最高风 速下稳定起降,续航相对增加37%21)。可扩展性好:系统模块化 设计允许后续功能迭代,如机载算法的更新、云服务的集成等。 正如业内报道所言,新一代系统的问世,为电网巡检带来了"智 能化革命" 22。然而, 现实应用中仍面临挑战。首先, 作业范围 限制:尽管 OcuSync 4+和中继站扩展了图传距离至25公里 3,在 复杂地形(山谷、峡谷等)或法规限制区域,实际有效半径可能受 限。其次,车载部署局限:车载机场需依赖道路网络,不适用于无 路可至的偏远线路,且车辆振动和供电也需额外考虑;同时,车载 模式下探测范围依然受限于机库布置和航程。再次, 环境适应性 与安全性:尽管设备在-30℃~50℃的温度下均可运行4,极端风 雨和复杂电磁环境仍可能影响传感器[10]。

七、优势与挑战

大疆机场3+Matrice 4系统在电力巡检中展现了显著优势:自动化与高效率。无人值守机场支持24小时不间断巡航,有效减轻

参考文献

[1] 苏盛;李银红;段献忠,电网故障自组织临界性及其在应对极端天气中的应用 [J] 科学通报,2009(03). [2]宋立业;姜钧。电力巡检无人机无线充电线圈场效应分析及优化 [J]. 制造业自动化,2023(03). [3] 彭湛博。无人机实时高清图传系统的设计与实现 [D]. 西安电子科技大学,2018. [4] 缪希仁;刘志颖;鄢齐晨。无人机输电线路智能巡检技术综述 [J]. 福州大学学报 (自然科学版),2020(02). [5] 刘传洋;吴一全;刘景景。无人机输电线路智能巡检技术综述 [J]. 中国图象图形学报,2023(10). [6] 常安;陈振辉;付明,等无人机电力巡检航线智能规划及自主巡检研究 [J]. 电网与清洁能源,2023(07). [7] 李海龙;刘金慧;张志国,等。基于无人机的输电线路工程图像采集研究 [J]. 电子设计工程,2022(08). [8] 裴扬、飞机易损性建模型方法研究及 DMECA 软件开发 [D]. 西北工业大学,2003. [9] 陈杰;唐占元;安之焕,等。基于无人机采集图像的输电线路异常检测方法研究 [J]. 电测与仪表,2023(07). [10] 陈嘉琛;俞曜辰;陈中,等。基于改进 YOLOv3 的输电线路缺陷识别方法 [J]. 南方电网技术,2021(01).