黑龙江省地下水资源分布特征及影响因素研究

田凤贺^{1,2},胡宸^{1,2},王旭^{1,2},高基景^{1,2},徐晓强^{1,2},赵剑^{1,2*}

1.中国地质调查局哈尔滨自然资源综合调查中心, 黑龙江哈尔滨 150086

2. 自然资源部哈尔滨黑土地地球关键带野外科学观测研究站, 黑龙江 哈尔滨 150086

DOI:10.61369/WCEST.2025030001

黑龙江省作为我国重要的农工业基地,地下水资源对其经济社会发展意义重大。本文系统研究黑龙江省地下水资源分 摘

布特征及影响因素,结果表明,地域上,平原区与山丘区地下水资源在含水层类型、埋藏深度和富水性上存在差异; 储量方面,全省总量虽丰富但呈下降趋势,区域分布不均且受自然与人为因素共同影响;水质上,存在"三氮"污染 问题,尤其在农工业区。自然因素中,地形地貌、地质构造和气象条件分别影响地下水的补给、运移、赋存与排泄; 人为因素方面,地下水开采导致水位下降、流场改变,土地利用变化和农业灌溉方式、水量调整显著影响地下水补耗

平衡与水质。

黑龙江省; 地下水资源; 分布特征; 影响因素

Study on Distribution Characteristics and Influencing Factors of Groundwater Resources in Heilongjiang Province

Tian Fenghe^{1,2}, Hu Chen^{1,2}, Wang Xu^{1,2}, Gao Jijing^{1,2}, Xu Xiaoqiang^{1,2}, Zhao Jian^{1,2*}

1. Harbin Natural Resources Comprehensive Survey Center, China Geological Survey, Harbin, Heilongjiang 150086

2. Harbin Black Soil Earth Critical Zone Field Scientific Observation and Research Station, Ministry of Natural Resources, Harbin, Heilongjiang 150086

Abstract: Heilongjiang Province, as an important agricultural and industrial base in China, groundwater resources are significant to its economic and social development. This paper systematically studies the distribution characteristics and influencing factors of groundwater resources in Heilongjiang Province. The results show that, geographically, there are differences in aquifer type, burial depth, and water richness between plain and hilly areas; in terms of reserves, although the total amount of the province is rich, it shows a downward trend, and the regional distribution is uneven and affected by both natural and human factors; in terms of water quality, there is a "three nitrogen" pollution problem, especially in agricultural and industrial areas. Among natural factors, topography, geological structure, and meteorological conditions affect the replenishment, migration, occurrence, and discharge of groundwater, respectively; in terms of human factors, groundwater exploitation leads to a decline in water level and changes in flow field, and changes in land use, agricultural irrigation methods, and water quantity adjustment significantly affect the balance of groundwater replenishment and consumption and water quality.

Keywords: Heilongjiang Province; groundwater resources; distribution characteristics; influencing factors

引言

黑龙江省作为我国重要农工业基地,经济社会发展高度依赖水资源。其地处中纬度亚洲大陆东缘,地形复杂,三江平原地下水资源 对农业与生态意义重大。但受气候变化和人类活动影响,省内地下水资源面临分布不均、储量减少、水质变差等问题,可能存在威胁农 业生产与生态可持续性。同时,黑龙江省水资源总量逐渐匮乏,时空分布失衡,降水量东多西少、山区多于平原,直接影响地下水补 给。加之工业化、城市化推进,地下水过度开采导致水位下降、漏斗现象发生。因此,研究其地下水资源分布及影响因素意义深远。

一、相关概述

近年来,关于黑龙江省地下水资源的研究取得了显著进展,尤其是在水资源量评估与水质监测方面。在水资源量评估方面,学者们通过引入支持向量机分类模型等先进方法,对黑龙江省地下水资源承载力进行了定量评价。例如,基于2008—2012年的统计数据,选取8项评价指标作为输入向量,构建了地下水资源承载力评价的支持向量机模型。黑龙江省作为我国粮食生产大省,地下水资源在粮食产能中发挥着重大的作用。如:粮食产能核心区三江平原,主要以开采地下水为主,导致地下水位逐年下降,部分地区生态环境甚至遭到一定程度的破坏,因此,黑龙江省地下水资源承载力总体呈下降趋势,且不同区域的承载力水平存在显著差异。此外,在水质监测领域,研究人员采用气相分子吸收光谱法(GMA)及电感耦合等离子体质谱法(ICP-MS)等技术手段,深入分析了地下水中"三氮"及其他金属元素的分布特征。

二、黑龙江省地下水资源分布特征

(一) 地域分布特征

黑龙江省平原和山丘地区的地下水资源分布特征与地质结 构、地形地貌等因素紧密相关 [3]。平原地区主要有三江平原和松 嫩平原, 其中三江平原作为重要农业基地, 地下水主要在第四系 孔隙含水层,埋藏深度40-80米,富水性中等,河谷漫滩和阶 地孔隙潜水区等地下水埋藏浅、易开采,成井以管井为主,地下 水流动受地形控制,由南向北或西向东;松嫩平原地下水分布更 复杂, 西部扇形地孔隙潜水区上部水质差, 主要开采下部深层承 压水, 且要做好浅层地下水止水, 其地下水流动路径受地质构造 和地表水系共同影响 [4]。山丘地区涵盖黑龙江干流、松花江、嫩 江等流域, 地下水赋存于第四系山间河谷孔隙水层和第三系裂隙 孔隙水层,埋藏深度30-70米,富水性较弱到中等,像黑龙江 干流第四系山间河谷孔隙潜水区开采条件好、成井以管井为主, 第三系和白垩系孔隙裂隙水区因富水性弱开采难, 且山丘区地下 水埋藏深度和富水性受气象条件影响,季节性冻土层制约地下水 开采,大兴安岭北段研究显示山丘区地下水分布与地形地貌、构 造单元及地表水流域相关,不同区域含水层结构和蓄水条件差异 明显。

(二)储量规模特征

黑龙江省地下水资源总量在全国占据重要地位,全省多年平均地下水资源总量约为297.44×10⁸m³,其中山丘区多年平均降水入渗补给量为1375108.52×10⁴m³,平原区多年平均地下水资源量为1731454.53×10⁴m³,资源储量较为丰富。然而,受气候变化和人类活动影响,地下水资源总量呈下降趋势,在三江平原和松嫩平原等主要农业区,地下水位存在持续下降问题⁵。同时,黑龙江省地下水资源时空分布不均,加剧了区域间水资源供需矛盾,威胁当地经济社会可持续发展。黑龙江省不同区域地下水资源储量受地形地貌、地质构造及气候条件等综合影响存在显著差异,

三江平原和松嫩平原等主要平原区储量相对较高,但因开采和农业灌溉需求增加,部分地区出现地下水漏斗现象;山丘区如大兴安岭北段地区储量较低且分布分散、富水性较弱至中等。此外,区域间地下水储量与降水入渗系数相关,三江平原降水入渗系数高,松嫩平原部分地区因蒸发量大降水入渗系数低,补给能力不足,这种区域储量差异既体现自然条件影响,也反映出人类活动对地下水资源分布格局的深刻改变。

(三)水质状况特征

黑龙江省地下水中"三氮"(硝酸盐氮、氨氮、亚硝酸盐氮)可能存在污染问题,影响地下水水质,这主要是农业氮肥过量施用、工业废水排放及生活污水渗漏等人类活动导致。黑龙江省地下水化学类型主要为 HCO3⁻-Cl⁻-Ca²⁺-Mg²⁺型和 HCO3⁻-Ca²⁺-Na⁺型,体现了地下水长期地质演化过程^[6]。"三氮"污染不仅威胁人体健康,还危害生态环境,防控工作迫在眉睫。近年来,黑龙江省地下水质变化显著,"三氮"污染愈发突出,三江平原典型区地下水中硝酸盐氮含量过去十年增长约30%,氨氮和亚硝酸盐氮含量也有所上升。农业活动增强、地下水超采普遍是主要原因,地下水位持续下降使包气带变厚,加剧污染物在包气带累积迁移;气候变化引发的降水量波动也间接影响地下水质,降水减少导致地下水补给不足,进一步恶化水质。因此,深入探究水质变化趋势及驱动机制,对科学制定水资源管理策略至关重要。

三、影响黑龙江省地下水资源分布的自然因素

(一)地形地貌

黑龙江省平原和山丘地区的地形地貌对地下水的补给、赋 存、径流、排泄及分布有着不同影响。在平原地区,三江平原和 松嫩平原地形平坦开阔, 地表水流速慢, 利于大气降水和地表径 流渗入地下, 为地下水提供丰富补给, 且平原含水层多为第四系 孔隙水, 沉积物颗粒细、渗透性好, 利于地下水储存与运移。以 三江平原为例, 其地下水埋藏深度一般在5-30米, 由西向东逐渐 加深, 和地形坡度、河流冲积作用相关。在排泄方面, 平原地区 地下水主要通过蒸发排泄,春夏季气候干燥时,蒸发加剧地下水 位下降, 由此可见平原地形深刻影响着地下水的空间分布和动态 变化 [7]。与平原不同,山丘地区地形起伏大,致使地下水在垂直 方向具有分异性,存在浅层与深层地下水明显分层的现象。如黑 龙江干流沿岸山间河谷地带, 第四系孔隙潜水区地下水埋藏浅、 富水性较弱至中等,易于开采;第三系裂隙孔隙水区则埋藏深, 受地质构造影响大。同时, 山丘地区地形起伏影响地下水补给, 山区大气降水是主要补给源, 但降水对浅层含水层补给多, 对深 层补给少,这种补给模式造成山丘地区地下水资源分布区域差异 明显,也加大了地下水开发利用的难度。

(二) 地质构造

断裂构造和褶皱构造作为地质构造的关键要素,对黑龙江省 地下水的赋存、运移、水质及分布规律产生着重要影响。断裂构 造为地下水提供运移通道并形成局部富水区,如大兴安岭北段地 区,断裂构造塑造了地下水分布格局,在部分断裂带附近形成自 流盆地,构建起补给区、承压区和排泄区完整的地下水循环系统。同时,断裂带岩石破碎、裂隙发育,致使地下水在运移时易与围岩发生化学反应,改变地下水化学类型与水质特征,断裂带附近地下水化学类型多为 HCOs⁻-Cl⁻-Ca²⁺-Mg²⁺型,凸显其对地下水化学成分的显著作用。。褶皱构造则通过改变地层空间形态与物理性质间接影响地下水分布。在褶皱发育区,背斜地层向上隆起,促使地下水沿裂隙向两侧运移,形成局部排泄区;向斜地层向下凹陷,利于地下水汇聚储存,形成富水区。而且,褶皱构造还影响着地下水的埋藏深度与富水性,像三江平原地区,褶皱构造还影响着地下水的埋藏深度与富水性,像三江平原地区,褶皱构造与第四系孔隙含水层相互作用,使得地下水在埋藏深度和富水性上呈现明显空间变化,这不仅关乎地下水资源的开发利用,也对区域生态环境稳定性有着深远影响。

(三)气象条件

降水和蒸发对黑龙江省地下水资源的分布与动态变化影响深 远。降水作为地下水主要补给来源,其时空分布特征决定着地下 水的补给状况。黑龙江省降水量季节性变化显著, 夏季降水量 约占全年的60%,冬季仅占4%,致使地下水补给呈现季节性波 动;空间上,东部山区因季风影响年降水量普遍高于西部平原。 不同区域降水入渗系数也有差异,三江平原降水入渗系数达0.2-0.3, 松嫩平原则为0.1-0.2, 体现出地形、土壤性质对降水入渗 的作用,以及降水对地下水资源分布的区域性控制 [9]。蒸发作为 地下水重要排泄方式,显著影响着地下水埋深和水位变化。在气 候干燥的春夏季,蒸发作用强烈,三江平原地区夏季蒸发量占全 年40%以上,冬季较少,且蒸发量季节性变化与地下水位变化紧 密相连, 在地下水埋藏浅的区域, 蒸发主导着地下水位下降。同 时,蒸发量受气温、湿度、风速等气象条件影响,在气温高、湿 度低、风速大的地区,蒸发作用更强,进一步加剧地下水位下降 趋势。由此可见,蒸发不仅是地下水排泄的关键机制,更是影响 地下水资源分布的核心因素之一。

四、影响黑龙江省地下水资源分布的人为因素

(一)人类活动

地下水开采与土地利用变化是影响黑龙江省地下水资源分布 的关键人为因素。在地下水开采方面,随着黑龙江省工业、生活 及农业灌溉用水需求增加,地下水位持续下降并形成区域性降落 漏斗。如松嫩平原南部自20世纪70年代起,因工业发展与人口增长,地下水开采量激增,90年代中期达峰值,形成以哈尔滨和大庆为中心的大型地下水位下降漏斗,改变地下水流向,逆转部分地区承压水与潜水补排关系;三江平原典型区2001-2019年间地下水位整体下降也与开采紧密相关,即便采取限采措施,水位恢复仍较缓慢¹⁰⁰。此外,地下水位下降对地下水流场的影响存在空间异质性,松嫩平原低平原地区水位降幅大,致使山前向低平原的地下水径流减缓甚至逆流,三江平原水田扩张区域地下水流场也显著改变。土地利用类型转变同样深刻影响地下水资源。农业现代化使耕地面积扩大、森林湿地减少,三江平原典型区水田扩张过度消耗地下水,导致水位下降、水资源承载力承压。城市化进程中,城市建设用地增加使地表硬化,减少地下水补给,松嫩平原南部城市扩张加剧水资源供需矛盾,生活污水和工业废水排放也威胁地下水质。

(二)农业灌溉

农业灌溉方式与水量变化对黑龙江省地下水资源的补给、消耗、水质及分布格局影响显著。灌溉方式上,漫灌虽操作简便、成本低,但水资源浪费严重,大量灌溉水经地表径流和深层渗漏流失,难以有效补给地下水,且易使土壤盐分和养分迁移至地下水层,改变化学组成。而喷灌和滴灌能精准控制水量与时间,三江平原实践表明,喷灌较漫灌可减少约30%用水量,减缓地下水位下降,滴灌在干旱年份也能缓解水资源压力,二者还能减少地表径流与深层渗漏,降低污染物入渗风险,保护地下水质。因此,优化灌溉方式、合理调控水量,对提高水资源利用效率、维持地下水资源可持续利用意义重大。

五、结束语

黑龙江省地下水资源分布受自然与人为因素共同作用,呈现地域差异与动态变化。自然方面,地形地貌决定分布格局,地质构造影响运移赋存,气象条件调节补给排泄;人为层面,过度开采、土地利用转变及不合理灌溉加剧资源失衡,导致水位下降、水质污染、生态退化。为实现地下水资源可持续利用,需统筹自然与人为因素施策。自然利用上,顺应地形地质优化开发布局,依气象变化规划储备;人为管控中,严控开采量修复降落漏斗,调整土地结构保护生态补给,推广节水灌溉技术减少浪费污染。

参考文献

[1]付强, 戴春胜.黑龙江省地下水资源承载力时空差异[J].黑龙江水利科技,2016,44(4):8-13.

[2] 束龙仓,徐丽丽,袁亚杰,吕岩,鲁程鹏,刘波. 三江平原典型区地下水流场变化及主要影响因素分析 [J].水利学报,2022,53(6):644-654.

[3] 李铁男,赵微,高雪杉.黑龙江农村平原地下饮用水水源成井规律分析[J].中国农村水利水电,2018,(2):198-203.

[4]赵微,李铁男,高雪杉.黑龙江农村山丘地下饮用水水源成井规律分析[J].中国农村水利水电,2018,(9):52-57.

[5]姜侠,姜清龙,孟立志.松嫩平原南部地下水流场特征及环境地质问题研究[J].地下水,2020,42(5):80-82.

[6].李丽君,刘强.黑龙江省海伦地区浅层地下水中"三氮"分布特征及来源解析[J].岩矿测试,2023,42(4):809-822.

[7] 束龙仓, 殷晓然, 袁亚杰, 吕岩, 鲁程鹏, 刘波. 三江平原典型区河水与地下水水量交换的时空变化规律分析 [1]. 水利学报, 2021,52(10):1151-1162.

[8] 赵微, 李铁男, 杨继富. 农村分散式地下水水源地选址技术研究 [J]. 中国农村水利水电, 2017, (10): 140-142.

[9] 张兆廷, 文楷, 戴长雷, 李善智. 黑龙江口地区水文地质区划与分析 [J]. 水利科学与寒区工程, 2021, 4(1): 38-41.

[10] 荆建宇,戴长雷,王美玉 . 三江平原水文地质条件主要特征分析 [J]. 甘肃水利水电技术 ,2023,59(7):31–34.