数智化视域下应用型本科院校土木专业 人才培养模式探索

杨乐, 刘亚丽

长江师范学院 土木建筑工程学院, 重庆 408000

DOI: 10.61369/ETR.2025300024

摘 要: 目前,多数应用型本科院校仍存在培养目标不清晰、数智化培养体系不成熟、数智化教育设备条件有限、教师数智化

能力不足等问题。本文基于"新工科+数智化科技"集成化课程基础上,提出技术基础层-专业融合层-场景应用层的"三阶递进"课程体系。通过建设虚拟仿真平台从项目驱动教学法、竞赛反哺教学机制等方面加强产教赛三融合。

促进应用型本科院校土木人才的数智化能力培养与提升。

关键词: 数智化; 三阶递进; 产教赛三融合

Exploration of Talent Cultivation Modes for Civil Engineering Majors in Applied Undergraduate Universities from the Digital-Intelligent Perspective

Yang Le, Liu Yali

School of Civil Engineering and Architecture, Yangtze Normal University, Chongqing 408000

contact of civil Engineering and Anathactare, Tangee Normal entropiety, energing 100000

Abstract: At present, most applied undergraduate universities still have problems such as unclear training objectives, immature digital-intelligent training systems, limited conditions of digital-intelligent educational equipment, and insufficient digital-intelligent capabilities of teachers. Based on the integrated curriculum of "New Engineering + Digital-Intelligent Technology", this paper proposes a "three-stage progressive" curriculum system consisting of a technical foundation layer, a professional integration layer, and a scenario application layer. By building a virtual simulation platform, it strengthens the integration of industry, education, and competitions in aspects such as project-driven teaching methods and competition-feedback teaching mechanisms, so as to promote the cultivation and improvement of digital-intelligent capabilities of civil engineering talents in applied undergraduate

universities.

Keywords: digital-intelligence; three-stage progression; integration of industry, education and

competitions

引言

随着 BIM 技术、物联网监测、建筑机器人等数智技术深度融入土木工程全生命周期,行业对兼具工程实践能力与数字化素养的复合型人才需求愈发迫切。然而,当前多数应用型本科院校土木专业人才培养却面临诸多瓶颈:课程体系滞后于行业数智化步伐,智能建造相关课程缺失或融合度低,教材内容迭代缓慢;实践教学中,校内虚拟仿真平台多停留在演示阶段,校外实训基地智能化设备不足,难以锻炼学生数字化工具应用能力;师资队伍数智化能力欠缺,教学与行业技术应用脱节。在此背景下,探索适应数智化发展的土木专业人才培养模式,重构课程体系与教学机制,成为应用型本科院校回应行业需求、提升人才培养质量的关键课题。

一、数智化视域下应用型本科院校土木专业人才培养 模式存在的问题

当前,BIM 技术、物联网监测、建筑机器人等数智技术已开始渗入土木工程全生命周期,行业对兼具工程实践能力与数字化素养的复合型人才需求激增。但是,现有应用型本科院校土木专

业课程体系滞后,专业核心课程设置未能紧跟行业数智化步伐,智能建造相关课程开设难度大,相关教材缺失、智能技术与专业内容融合度较低以及专业教师数智化能力不足等问题导致土木专业学生数字化技术欠缺。传统专业课程与前沿技术呈现"两张皮"现象,教材内容迭代缓慢,装配式建筑、智能监测、Pathon语言等鲜少融入土木专业核心课程,课堂内容与工程一线形成明

基金项目: 重庆市高等教育教学改革研究项目(233417)

显代差¹¹。另外,实践教学场景与虚拟仿真实验室割裂。校内虚拟仿真平台大多停留在操作演示阶段,学生难以通过模拟施工解决真实工程问题。校外实训基地智能化设备配备率低,部分工地仍沿用传统施工管理模式,实践环节难以锻炼数字化工具应用能力。毕业设计选题仍偏向常规结构类设计,而智慧工地管理、数字孪生等前沿技术应用占比极低,制约学生数智化技术转化能力培养。除此,师资队伍数智化能力更亟待提高。部分教师对智能建造技术存在认知壁垒,课堂难以融入Python数据分析或物联网应用案例等新兴技术。教师培训偏重理论研修,缺少在智慧工地、BIM中心的实战历练,导致教学与行业技术应用脱节^[2-3]。校企协同育人机制尚未打通,企业工程师难以深度参与课程开发与项目指导。

二、土木行业数智化转型对人才能力则提出的新需求

首先,专业技术能力维度升级。面对智慧工地需求,应熟练处理传感器实时数据,依托智能监测系统预警桥梁结构异常。土木人才需突破传统手绘、平面制图局限向三维立体建模升级,从CAD、天正、Arcgis、BIM 平面绘图转向 Python、C++ 脚本、ANSYS 仿真开发,实现参数化设计对梁柱节点的智能优化、验证复杂结构力学性能等更高级功能应用,形成"勘察-设计-分析-验证"全流程数字化能力。再者,土木人员职业素养结构尚待重构。「工程问题解析需融合数据思维,将混凝土裂缝检测转化为图像识别与损伤评估模型。跨学科协作要求深度参与智慧工地系统开发,与算法工程师协同优化施工机械路径规划。技术迭代压力下,需建立逆向学习机制,通过拆解数字孪生案例掌握智能管廊运维逻辑,保持知识库动态更新。

三、数智化人才培养模式重构路径

(一) "三阶递进" 课程体系设计

1. 技术基础层

课程体系底层聚焦数字化工具与基础技能的系统化训练。以《Python 工程计算》为例,教学内容需跳出传统编程框架,紧扣土木工程实际需求,例如编写脚本批量处理地质勘探数据、开发桩基承载力自动计算程序,让学生在解决基坑降水模拟、混凝土配比优化等真实问题中掌握编程逻辑。^[8-9] 同步开设《BIM 基础与应用》必修课,摒弃单纯建模软件操作教学,转而以实际工程项目为载体,要求学生在协同设计平台上完成建筑结构碰撞检测、施工进度 4D 模拟等任务,同步融入 LOD (细节层级)标准、IFC数据交换等工程实践规范。教学过程中可引入桥梁 BIM 模型逆向拆解训练,学生通过分解预制构件模型理解参数化设计逻辑,为后续专业融合奠定技术基础。

2. 专业融合层

在《混凝土结构》《路基路面工程》等传统核心课中,通过 "知识点+数智化应用"双主线重构教学内容。例如讲授钢筋混凝 土梁抗弯设计时,同步引入光纤光栅传感器的应变监测案例,要 求学生基于监测数据反推荷载分布规律,并利用有限元软件验证 理论计算结果。在《工程地质》课程中增设"边坡智能监测"专题,提供北斗位移监测系统原始数据,引导学生通过 Python 清洗数据、构建滑坡预警阈值模型,最终输出带有风险等级标识的二 维地质剖面图。[10-11] 此类教学设计需遵循"理论推导—数据采集—模型验证"闭环,让学生在专业课程中自然习得物联网、大数据分析等技能,避免数字化技术与专业知识的割裂。

3. 场景应用层

设计部分数智化课程直接对接智慧工地、数字孪生等工程前沿场景。校企共建的《智慧工地项目管理》课程可依托真实在建项目,由企业工程师提供施工现场的 BIM5D 数据、塔吊运行日志、劳务实名制系统记录等原始资料。学生分组扮演项目经理、BIM 工程师、安全总监等角色,利用无人机巡检影像识别安全隐患,通过物联网平台调取混凝土测温数据判断浇筑质量,最终输出包含进度模拟动画、资源消耗热力图的可视化报告。[12] 课程考核设定为"突发暴雨导致基坑积水"等动态场景,要求学生综合运用数字孪生技术模拟排水方案,并通过移动端指挥系统协调施工班组响应。数智化实习实训课程可切实打通从技术工具到工程应用的能力转化路径,培养学生在实际复杂场景下的数字化问题解决能力。

(二)虚实联动的教学改革

1. 项目驱动教学法

以真实工程项目的数字孪生模型为核心重构课堂。例如依托城市综合管廊智慧工地项目,将施工 BIM 模型与物联网实时监测数据(如沉降、温湿度)同步映射到教学平台,学生分组扮演设计、施工、运维团队角色。任务链设计需覆盖全周期:前期基于数字孪生体模拟管线碰撞,中期通过 AI 算法预测混凝土浇筑裂缝概率并优化养护方案,后期利用运维数据反推设计缺陷 [4]。教学过程中,企业工程师以"技术顾问"身份介入,提供实际工程中塔吊避让算法逻辑、装配式构件 RFID 追溯系统等核心经验。学生需在虚拟推演与实地踏勘的交替中,完成从模型调优到现场问题反馈的闭环训练,强化"数据驱动决策"的职业思维。

2. 虚拟仿真平台建设

开发紧贴工程痛点的智能化实训模块。基坑监测仿真平台可集成北斗位移传感器、渗压计等设备传回的真实数据流,学生需通过 Python 清洗异常值,利用随机森林算法构建支护结构安全预警模型,并在虚拟场景中模拟不同降水方案下的围护墙变形趋势。装配式施工模拟模块则聚焦预制构件吊装路径智能规划,学生通过 AR 设备扫描虚拟工地,动态调整塔吊运行轨迹以避免空间冲突,系统实时生成吊装效率热力图与风险报告。[13] 平台需预设"突发强风导致构件偏移"等动态变量,要求学生结合有限元仿真结果调整方案,培养其在不确定性场景下的快速响应能力。

3. 竞赛反哺教学机制

将智能建造大赛的实战基因注入日常教学。例如分解全国高校 BIM 大赛中的"桥梁健康监测算法设计"赛题,转化为《工程结构》课程的学期项目:学生基于大赛提供的桥梁振动频率历史数据,开发裂缝扩展预测模型,并通过 Flask 框架搭建简易监测

系统可视化界面。竞赛的评分细则直接转化为课程考核指标,如算法泛化性、系统交互友好度等维度。建设实训案例库,将在竞赛中的难点问题转化为虚拟仿真平台的训练关卡。通过"以赛验学、以赛促改"的机制,可动态吸收行业最新技术需求,促使教学内容与工程前沿接轨[5-6]。

四、结束语

应用型本科院校的数智化土木人才培养模式改革需坚持"需

求导向、能力本位、持续改进"原则。通过重构技术基础层 - 专业融合层 - 场景应用层的"三阶递进"课程体系,建立校企协同育人长效机制,构建"项目驱动教学法"与竞赛反哺教学机制的产教赛三融合通道,加强专业教师数字技术应用能力提升,才能培育出适应数字化、智慧化、信息化的土木行业人才,有效解决匹配与行业升级转型的需求问题。[14-15] 未来需进一步探索数智化视域下土木人才培养质量动态评估体系,建立基于大数据的学习预警机制,推动人才培养模式的持续优化。

参考文献

[1] 陈偲苑.本科院校工程管理专业人才培养目标的质性分析[J]. 武汉冶金管理干部学院学报,2024,34(3):80-85.

[2] 汪玲,桂和荣,冯松宝."新工科"背景下地方应用型本科院校土木工程专业人才培养模式探索 [J]. 内蒙古科技与经济,2020(14):24-25,27.

[3] 吴巧云,冯海,陈旭勇.教学研究型院校土木工程专业应用型人才培养模式探索与实践[J].科教导刊-电子版(中旬),2021(5):4-6.

[4] 陈丙义: 地方本科院校人才培养模式的探索——以土木工程专业人才培养为例[J]. 高等建筑教育, 2009, 18(1): 36-39.

[5] 付亚男,朱新娜,邹建华,等. 应用型本科高校土木工程专业数字化转型与教育教学模式改革的探索与实践 [J]. 三峡高教研究,2024(3):21-27.

[6] 贾晨,邵永松 .AI 赋能的递进式土木工程创新教育模式探索 [C]// 中国钢结构协会结构稳定与疲劳分会第18届(ISSF-2024)学术交流会暨教学研讨会论文集 .2024.

[7] 潘雯 . 数字化转型下工程造价专业人才培养的难点与对策 [J]. 学周刊 ,2025,(10):111-114.

[8] 刘广娜. 数智化转型背景下应用型本科院校会计人才培养模式实践路径 [J]. 知识窗 (教师版), 2024, (12): 37-39.

[9] 罗纯,吴志聪,吴先勇.数智化时代地方高校课程建设的路径选择[J].百色学院学报,2024,37(06):132-138.

[10] 王立峰,肖子旺,张海玉,房德威,田玉梅. 高校土木类专业校企协作人才培养的探索与实践 [J]. 赤峰学院学报 (自然科学版),2024,40(11):55-59.

[11] 尹貽林,张娜,柯洪.新工科背景下"数智工程造价"应用型人才培养模式的探索与实践[J]. 高等建筑教育, 2024, 33(03):81-89.

[12] 陈旭,雷东,刘蕾.数智化环境下领军型管理人才培养模式的创建与实践[J].中国大学教学,2023,(12):32-37+62.

[13] 黄琳. 数智化背景下应用型本科院校人才培养模式研究 [J]. 行政事业资产与财务, 2023, (14):121-123.

[14] 吴长, 王立宪. 新时代土木专业人才培养与课程建设改革及实践 [J]. 创新创业理论研究与实践, 2023, 6(11): 95-97.

[15] 李文盛,郝勇 . 融合 BIM 的土木专业人才培养模式研究与实践 [J]. 轻工科技 ,2022,38(04):102–103+115.