七叶树的药理作用及生态资源价值

张惟宗

北京师范大学第二附属中学,北京 100000

DOI:10.61369/EAE.2025030006

摘 要 : 七叶树在我国有悠久的药用历史,其成熟种子为中药娑罗子,具有疏肝理气,宽中止痛的功效。现代研究表明,含有

七叶皂苷、黄酮苷等化学成分,具有抗肿瘤,缓解阿尔茨海默症,肠道保护等作用。同时,七叶树株型美观、适应性 广等特点,是著名的观赏树种,具有重要的景观价值和生态价值。本文通过文献资料综述,介绍了七叶树的药理作用

及生态资源价值,为其研究和综合利用提供了重要参考。

关键词: 七叶树;七叶皂苷;黄酮苷;药理作用;生态保护

Pharmacological Effects and Ecological Resource Value of Aesculus Chinensis Bunge

Zhang Weizong

The Second High School Attached to Beijing Normal University, Beijing 100000

Abstract: Aesculus chinensis has a long history of medicinal use in China, with its mature seeds, known as

"Suoluo Zi" in traditional Chinese medicine, possessing the effects of soothing the liver and regulating qi, as well as relieving abdominal pain. Modern research indicates that it contains chemical components such as aescin and flavonoid glycosides, which exhibit anti-tumor, Alzheimer's disease alleviation, and intestinal protection properties. Additionally, Aesculus chinensis is renowned as an ornamental tree species due to its attractive plant form and wide adaptability, holding significant landscape and ecological value. This paper provides a comprehensive review of the pharmacological effects and

ecological resource value of Aesculus chinensis through literature review, offering important references

for its research and comprehensive utilization.

Keywords: Aesculus chinensis Bunge; aescin; flavonoid glycosides; pharmacological effects; ecological

conservation

引言

七叶树 Aesculus chinensis Bunge为无患子科七叶树属落叶乔木,别名猴板栗、娑罗树等。原产于白垩纪晚期的亚洲,后扩散至美洲和欧洲。主要特征是掌状复叶对生,小叶七枚,故名"七叶树",在春季也会开圆筒形花序的花,花色洁白。其果实表面棕色或棕褐色,近圆形,种皮硬而脆。野生的七叶树分布于低海拔地区的山地和气候湿润的阔叶林中。在佛教传说中,释迦摩尼坐化在婆罗树下,一说此处"婆罗树"指七叶树,故在寺庙中多有栽培。由于其分布广泛,栽培成活率高,观赏价值高,同时具有丰富的人文底蕴,常作为城市景观植物,在全国各地广泛栽培。

七叶树在我国药用历史悠久,其果实,秋季成熟时采收,除去果皮,干燥即为中药婆罗子,具有疏肝理气,和胃止痛功效。七叶树作为景观植物也具有药用价值,其重要的生态和经济价值引起了人们的关注,近年来关于其化学成分的生物学活性研究、生态资源保护等方面展开了广泛研究,本文对此进行综述,旨在为七叶树药用和生态资源开发和利用提供参考。

一、七叶树药用历史记载

七叶树在中国的药用历史可追溯至清代地方民族医学文献,在《本草纲目拾遗》《药性通考》中均有记载^{[1][2]}。其种子"娑罗子"在《彝药志》《楚彝本草》中明确记载具有"疏肝理气、和胃

止痛"的功效,用于治疗肝胃气滞引起的胸腹胀闷、胃脘疼痛, 树皮则用于急慢性胃炎和胃寒疼痛。现代《中国药典》一部,正 式收载娑罗子,并延续其"理气宽中"的传统功效,主治脘腹胀 满、经前乳胀等症。

二、七叶树的化学成分及药理作用研究

现代化学和药理学研究表明,七叶树主要含有七叶皂苷类、 黄酮类化学成分,具有抗炎、降低胆固醇、抑制胃液分泌等药理 作用。

(一)七叶皂苷类

七叶树属植物中广泛含有七叶皂苷类化合物,主要是由七叶树干燥成熟种子中提取的一类三萜皂苷化合物 [3]。其中对中华七叶树种子中三萜皂苷成分的研究开始于20世纪末期,到目前为止已经提取分离得到了26种单体化合物。HPLC法测定发现七叶皂苷 Ia、七叶皂苷 Ib、异七叶皂苷 Ia和异七叶皂苷 Ib是七叶树种子中含量最高的四种三萜皂苷,占所有皂苷含量的80%以上。1999年发现了8个新的皂苷类化合物,即七叶皂苷 A、七叶皂苷 B、七叶皂苷 C、七叶皂苷 D、七叶皂苷 E、七叶皂苷 F、七叶皂苷 G和七叶皂苷 H^[4]。

有研究报道^[6],七叶皂苷对阿尔茨海默症有所缓解,对于秀丽线虫模型的研究表明,其可延长线虫生存时间,在阿尔茨海默症发病时减缓症状,通过上调抗氧化应激基因 sknl的表达来减轻氧化损伤,从而改善运动能力和认知水平的降低。研究表明七叶皂苷具有抗癌的作用^[6]。在其对于结直肠癌细胞增殖侵袭作用的研究中,氧化三甲胺(TMAO)可以诱导结直肠癌细胞大量扩增,而七叶皂苷处理后可显著降低细胞的存活率,具有癌细胞杀伤能力。同时,七叶皂苷还表现出抑制结直肠癌细胞迁移的能力,可以抑制 TMAO对于 HCT116细胞中相关通路的表达增强,达到抗肿瘤的作用。

对于高脂血症和动脉粥样硬化抗氧化活性的研究表明¹⁷,七叶皂苷可以促进 Keap1-Nrf2/ARE 信号通路的激活,抑制氧化应激,从而改善钙质血症。七叶皂苷还具有很好的抗炎作用,它可以抑制巨噬细胞释放相关蛋白¹⁸。

七叶皂苷还具有肠道保护、镇痛、抗病毒、调节能量代谢并提高血管张力等多种药理作用。在临床应用中,七叶皂苷常用于治疗脑出血、神经类疾病及炎症等疾病具有治疗、保健等作用「^{[9][10][11]}。目前,以七叶皂苷为有效成分的制剂主要为七叶皂苷钠冻干粉针剂、七叶皂苷钠搽、复方七叶皂苷钠凝胶和七叶皂苷钠片等,用于脑水肿、创伤或术后肿胀、静脉回流障碍性疾病(如静脉曲张、血栓性浅静脉炎)、脊柱退行性疾病(如腰椎间盘突出、坐骨神经痛)、放射性直肠炎及周围神经炎症的治疗^[12]。

(二)黄酮类

黄酮类化合物广泛分布于七叶树属植物中,具有抗炎、抗肿瘤、抗氧化等多种生物活性[11][20][21]。七叶树中所含的黄酮类化合物有黄酮醇类、花色素类和黄烷醇类,其中黄酮醇类化合物大部分积累于花中,少部分富集在叶片中,种子中含量较低[14]。

七叶树中的原花青素 A2具有优秀的抗氧化功能,通过中和自由基能够有效降低氧化应激诱导的皮肤细胞损伤,从而延缓皮肤老化进程并抑制炎症反应 [17]。

从七叶树中提取的黄酮类糖苷ⅠB、黄酮类糖苷ⅠC、黄酮类糖苷ⅡD则能够通过p38丝裂原活化蛋白激酶(p38 MAPK)、

核转录因子 $-\kappa$ B (NF $-\kappa$ B) 和转录激活子 -3(STAT -3) 抑制一氧化氮 (NO) 的释放,这可能是娑罗子发挥抗炎作用的基础 [18]。

有研究表明,七叶树的总黄酮对人肺癌 A549、人官颈癌 HeLa、人肝癌 HepG2 及人乳腺癌 MCF-7 细胞的生长具有明显 的抑制作用,在体内实验中,总黄酮可抑制小鼠胸腺萎缩和脾细胞的生长,发挥抗肿瘤作用 [19]。

三、七叶树的生态资源价值

(一) 作为城市景观树的生态作用

七叶树因为其易于栽培,树形美观、易于养护、适应性广等优点,作为中国多个城市的主要景观树木和道路行道树广为栽培。在关于北方城市常见绿化树木枯落叶新欢再利用潜力研究中,将青桐、银杏、紫叶李、栾树、七叶树、樱花、火炬树、海棠、构树、鹅掌楸的枯落叶样本进行处理和分解实验,将其埋入土壤一段时间后进行数据处理可知,七叶树枯落叶初始化学组成中 N含量较低,P含量较高,其分解速率在十种常见绿化树木中排名第七,这是由于分解系数和初始化学组成中的 N、P含量成显著正相关,和木质素呈负相关。可见七叶树的落叶样本可作为磷肥原料 [12]。

城市景观树木的另一大作用在于利用植物吸滞能力净化城市 大气污染。在对于城市常见园林树木滞尘能力和叶片微形态的研究中,针对国槐、胡桃、七叶树、榆树、紫叶李、七叶树、紫叶桃、白蜡、悬铃木、银杏、雪松、油松、白皮松等树木进行研究,采集健康成熟叶片进行颗粒物测定,结果显示七叶树的单株滞尘能力在十二种植物中排名第六,这和它的叶面结构,叶片面积等密切相关。说明七叶树作为城市景观树木,对于净化城市空气,改善空气质量也有重要的作用^[13]。七叶树作为城市景观树木,还具有吸收多种环境污染物的特性和功能特点,具有显著的培育价值。

(二)资源保护现状

在全国范围内对于七叶树的种质资源和遗传多样性进行调查,发现不同地方七叶树果皮和种皮的颜色基本一致,如果皮为 棕米黄,种皮为黑红色。

七叶树上述形态特征与地理位置的相关性表明:树高和纬度 呈显著负相关,单种重和单果重呈极显著正相关。在调查走访 中,发现有些地方的七叶树古树由于生长在景区和寺庙而被保护 起来,有些树生长在高山或郊外而没有被保护^[14]。七叶树作为重 要的观赏和药用树种,其生态保护需要从多角度入手。首先应加 强原生地保护,在自然分布区建立保护区,禁止非法采挖和破坏 栖息地;其次推广人工繁育技术,通过种子育苗、扦插等方式扩 大种群数量;同时开展种群监测和基因库建设,保存优质种质资 源;此外还需加强公众教育,提高对七叶树生态价值的认知,鼓 励社区参与保护。在城市建设中可将其作为特色景观树种合理引 种,既美化环境又促进物种保护。

四、讨论与展望

七叶树不仅可作为景观植物,同时也具有药用价值,具有重要的生态价值和经济价值,其研究具有深远的意义。本文通过对七叶树有效成分及其生物学活性的综述,了解到其在抗炎、降低胆固醇、抑制胃液分泌等方面的显著药效,尤其是七叶皂苷在抗癌、抗氧化、降血脂等方面的突出表现,为开发新药提供了有力的科学依据。此外,七叶树在城市景观建设中的生态作用也不容忽视,其净化空气、美化环境的效果,为城市绿化提供了一份自然助力。

未来,对于七叶树的研究可以从以下几个方面进一步深入:

一是加强七叶皂苷及其他有效成分的分离纯化的研究,促进新技术的推广应用。二是探讨其有效成分作用机制的深入研究,为其药理学应用提供理论基础。三是开展七叶树在土壤改良和水土保持等方面的研究,丰富其在生态学领域的应用。四是加强七叶树的种质资源保护和合理利用,通过遗传育种等手段,提升其在不良环境下的适应能力和药用价值。

综上所述,七叶树在药理和生态领域具有广阔的研究前景,通过持续不断的科学研究,这种天然资源有望在医药健康、生态保护等方面发挥更大的作用。

参考文献

[1] 赵学敏 . (1983). 本草纲目拾遗 . 人民卫生出版社 .

[2] 国家中医药管理局 . (1999). 中华本草 (第5册) . 上海科技出版社 .

[3] 陈长军,徐为华,张梦晨,等. 七叶皂苷药理活性及制剂临床应用研究进展 [J]. 武汉大学学报 (医学版), 2020, 41(01): 157-163.

[4]路强强,石新卫,胡浩,等.中华七叶树种子化学成分及生物活性研究进展[J].西北药学杂志,2016,31(06):651-654.

[5]张一平,李璐迪,朱安,等,基于秀丽线虫模型探究七叶皂苷和右美沙芬对阿尔茨海默病的保护作用[J].北京大学学报(医学版),2025,57(04):764-771.

[6] 习隽丽,周超,李子银,等. 七叶皂苷对结直肠癌细胞增殖、侵袭的作用及机制研究 [J]. 世界中医药,2024,19(13):1954 -1958 +1965.

[7]王学智,郝亚逢,原涛,等.七叶皂苷钠对高脂血症大鼠动脉粥样硬化和抗氧化活性的影响及作用机制[J].医学分子生物学杂志,2025,22(02):187-193.

[8] 陈丹丹,周格知,周亚琼 . 七叶皂苷钠联合甘露醇在基底节区脑出血患者的应用效果 [J]. 浙江创伤外科 , 2025 , 30(05) : 896-899.

[9] 孙小利,刘俊然.七叶皂苷钠联合维生素 B12治疗周围性面神经麻痹的疗效研究[J].黑龙江医药科学,2025,48(02):136-138.

[10]王孝生,秦春跃,刘杨俊. 七叶皂苷钠改善老年下肢骨折术后肿胀疗效及对氧化应激、炎症因子的影响[J]. 分子诊断与治疗杂志,2025, 17(03): 466-469.

[11] 刘晓禹,范姝媛,白奉轩,等.基于尿酸转运蛋白探讨中药黄酮类成分治疗高尿酸血症的作用机制[J].生命的化学,2025,45(03):480-488.

[12] 范晓慧, 马勇, 冯家豪, 等.北方城市10种常见树木凋落叶的分解及养分释放特征[J]. 西北林学院学报, 2020, 35(06): 25-31.

[13] 宁婷婷,纪紫嫣,马雪媛,等 . 聊城市常见园林树木滞尘能力与叶片微形态解析 [J]. 安徽农业科学,2021,49(04):121–124+151.

[14]李玉岭,张元帅,董爱辉,等 . 七叶树种质资源调查和表型性状多样性分析 [J]. 南方林业科学,2022,50(04): 17–23.

[15]徐飞,郭东凯,季士亮,等.七叶皂苷钠的药理作用及临床药物联用[J].中国医药科学,2022,12(10):51-55.

[16]魏一丁.七叶树中类黄酮和香豆素糖基转移酶的鉴定与功能分析 [D]. 湖北中医药大学, 2019.

[17] 尉芹, 马希汉, 杨秀萍, 等. 娑罗子化学成分研究进展[J]. 西北林学院学报, 2003, (04): 126-129.

[18] Cao, H. N., Ruan, J. Y., Han, Y., Zhao, W., Zhang, Y., Gao, C., ... & Wang, T. (2023). NO release inhibitory activity of flavonoids from Aesculus wilsonii seeds through MAPK (P38), NF- k B, and STAT3 cross-talk signaling pathways. Planta Medica, 89(01), 46-61.

[19] 石沁,叶利春,刘华侨,等。罐组分级逆流提取技术在娑罗子提取工艺中的应用 [J]. 世界科学技术 - 中医药现代化,2018,20(04):603-607.

[20]Lu, X. Q., Ren, P., Qin, S., Li, J., & Zhao, X. N. (2025). Antioxidant potential of four flavonoids from Scutellaria baicalensis: a computational investigation on radical scavenging activity and enzyme inhibition. New Journal of Chemistry.

[21]Li, L., Jin, Y., Li, T., Lv, B., Yuan, D., Li, X., & Yuan, J. (2025). Flavonoid Polyphenols as Therapeutic Agents for Fatty Liver Disease: Mechanisms, Microbiome Interactions, and Metabolic Insights. Molecular Nutrition & Food Research, e70144.