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ABSTRACT: With the continuous development of flexible
DC technology in urban power grids and the gradual increase
in flexible loads, abundant controllable resources have become
available to support the operation of urban power systems.
To fully utilize the regulation capabilities of both flexible DC
systems and flexible loads, this project proposes a flexible DC
control strategy that considers the resilience margin of urban
power grids. First, the coordination and optimization method
between grid resilience and flexible DC systems is analyzed,
aiming to enhance the grid’s regulation capacity through
the controllability of flexible DC. Then, a resilience model
for controllable internal resources within the urban grid is
developed to fully exploit their regulation potential and further
improve the grid’s flexibility. Furthermore, by combining the
coordination capability of flexible DC with the regulation range
of controllable resources, a collaborative control strategy is
proposed to maximize the advantages of both, supporting the
development of a new-type power system. Finally, simulation

case studies verify the effectiveness of the proposed method.

KEY WORDS: urban power grid; resilience margin; flexible
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