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摘   要 ：  针对电动汽车需求增长对电池模型精度的要求，本研究构建了整合电化学、老化与热现象的锂离子电池综合耦合机理

模型，以保障电池性能、安全性及使用寿命。为解决模型中大量未知参数的辨识问题，研究采用数据驱动方法展开参

数优化：首先通过拉丁超立方抽样生成多样化参数组合，基于该组合仿真耦合机理模型以获取宏观响应数据集；随后

利用该数据集训练人工神经网络 构建元模型，显著提升优化效率；再经敏感性分析筛选出关键影响参数；最后采用遗

传算法优化参数，最小化模型预测值与实验数据的偏差。结果显示，在33个模型参数中，9个高敏感性参数与10个

中敏感性参数对模型输出影响显著；优化后模型在电压、温度、容量仿真中的平均绝对误差分别为0.0147、0.2132、

0.0163。研究证实所提方法具备高准确性与有效性，为锂离子电池建模提供了稳健高效的解决方案。
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A b s t r a c t  :   In response to the increasing demand for electric vehicles and the requirement for battery model 

accuracy, this study constructs a comprehensive coupling mechanism model of lithium-ion batteries 

that integrates electrochemical, aging, and thermal phenomena to ensure battery performance, 

safety, and service life. To solve the problem of identifying a large number of unknown parameters 

in the model, a data-driven approach is adopted for parameter optimization. Firstly, a diversified 

parameter combination is generated through Latin hypercube sampling, and a coupling mechanism 

model is s imulated based on th is combinat ion to obtain a macroscopic response dataset; 

Subsequently, the dataset was used to train an artificial neural network to construct a meta model, 

significantly improving optimization efficiency; Further screening key influencing parameters through 

sensitivity analysis; Finally, genetic algorithm is used to optimize parameters and minimize the 

deviation between model predictions and experimental data. The results showed that among the 

33 model parameters, 9 high-sensitivity parameters and 10 medium sensitivity parameters had 

a significant impact on the model output; The average absolute errors of the optimized model in 

voltage, temperature, and capacity simulations are 0.0147, 0.2132, and 0.0163, respectively. The 

research confirms that the proposed method has high accuracy and effectiveness, providing a 

robust and efficient solution for modeling lithium-ion batteries.

Keywords  : lithium-ion battery; calendar aging; electrochemical thermal coupling mechanism model; 

parameter identification
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一、锂离子电池的电 - 老化 - 热机理模型

本 文 为18650型 LIBs 开 发 了 一 个 ECAT 耦 合 模 型， 其 中

P2D 模型用于描述负极、隔膜和正极中的固相和电解液动力学。

如图1所示，LIBs 被划分为三个不同区域，即负极（范围从0到

Ln）、 隔膜（范围从 Ln 到 Ln + Lsep） 和正极（范围从 Ln + 

Lsep 到 Ln + Lsep + Lp）。多孔电极由球形颗粒组成，周围被电

解液包围，在运行过程中促进锂离子（Li+）在颗粒表面的嵌入和

脱嵌。为了准确模拟电化学、热力学和老化机理之间复杂的相互

作用，采用了一个三维热模型来捕捉电池内部的温度变化。

图1. 耦合 ECAT 机理模型关系示意图

（一）电化学模型

电荷转移方程描述了 Li+ 在电池电极表面的嵌入和脱嵌过程。

该过程伴随着电子的转移，是电池充放电过程中的基本反应，固

相和溶液相的电荷转换方程由欧姆定律描述如下 [9]：

 （1）

 （2）

其中，φs 和 φe 分别是固相和电解液相的电位。由于隔膜两

侧的电子电流密度为零，离子电流密度即为工作电流密度；而在

正负集流体末端，电子电流密度为工作电流密度，离子电流密度

为零，并且负极集流体的电位被定义为零。

（二）老化模型

本研究聚焦于两种老化机理：SEI（固体电解质界面膜）生长

和锂析出 [10]，如图1的老化部分所示。因此，在负极考虑了三种电

化学反应：锂嵌入、SEI 形成和锂析出。嵌锂石墨反应遵循方程：

 （3）

本模型的一个特点是考虑了由于表面膜生长导致的负极孔隙

率降低，这可以通过以下表达式实现，该表达式将负极孔隙率的

变化与表面膜厚度的增加联系起来：

 （4）

引言

锂离子电池（LIBs）因其优异的能量密度、无记忆效应和低自放电率等优点，被广泛应用于电动汽车和储能系统中 [1，2]。LIBs 的老

化源于充放电循环过程中不可逆的电化学反应和物理结构变化，这会导致电池容量下降和安全性降低。这种退化会缩短车辆续航里程、

削弱动力性能，并加剧热安全风险，甚至可能引发燃烧或爆炸。例如，随着电池老化，负极动力学性能的恶化会导致在充电电流或截止

电压未作调整的情况下发生锂沉积和枝晶生长，从而显著降低容量并增加安全隐患。因此，准确监测 LIBs 的运行状态并实施合适的管

理和维护策略，对于确保其安全高效使用以及延长使用寿命至关重要 [3~5]。

近期研究强调了三种主要的 LIBs 状态评估策略：实验测试、数据驱动分析和建模。实验测试包括测量电池开路电压（OCV）以评

估荷电状态（SOC），测定内阻以获取健康状态（SOH）信息，以及采用库仑计数法追踪电荷变化。这些方法虽然简单直接，但仅能提

供有限的电池状态概览，因为它们无法直接测量SOC和SOH等关键参数，而必须通过间接变量进行评估。这些测试通常在实验室进行，

耗时过长，无法提供实时反馈或获取内部参数。另一方面，数据驱动技术通过分析运行数据来识别电池性能中复杂的非线性和多变量特

征模式，使其在状态评估方面具有强大潜力 [6~8]。然而，数据驱动方法高度依赖于数据的质量和数量，而获取覆盖广泛运行和边界条件的

电池历史运行数据仍然十分困难。此外，作为一种“黑箱”模型，数据驱动方法缺乏直观的物理解释，难以理解模型输出的原因，也无

法为电池更精细的老化缓解和安全设计提供指导。

为了克服这些挑战，并提升机理模型在电池管理系统中的实际应用价值，本研究创新性地将电池老化机理和温度效应集成到 P2D 模

型中，构建了一个全面的锂离子电池电 - 老化 - 热耦合机理模型（ECAT）。此外，引入人工神经网络（ANN）作为复杂机理模型的高

效近似器，通过构建耦合机理模型的元模型（meta-model），实现了对电池性能响应的快速准确预测。随后，通过引入敏感性分析，识

别出对模型输出影响最大的参数，从而降低多参数优化的维度，并优化计算资源的分配。最后，通过优化算法获得了使模型预测值与实

验数据差异最小的模型参数。如上所述，本文的主要贡献和创新点如下：

(1) 开发了一个耦合的 ECAT 机理模型，以全面评估 LIBs 的电性能、老化和温度效应，并提出了一种数据驱动辅助的高效模型参数

辨识方法，提高了耦合机理模型的精度和动态适应性。

(2) 提出了一种基于 ANN 的元模型构建方法。在参数辨识过程中，用元模型替代原始耦合机理模型，能有效简化建模过程，降低计

算成本，同时保持预测精度。

(3) 设计了一种结合敏感性分析和遗传算法（GA）的多步多目标辨识策略，协同优化电池的电压、温度和容量输出响应。该策略高

效地辨识了19个对电池模型有显著影响的参数，从而确保了模型输出的高精度。
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（三）热模型

大多数电化学和老化参数都受温度影响。主要热源包括电化

学产热、欧姆热、极化热和老化副反应热。鉴于温度在电池建模

中起着至关重要的作用，电池温度由以下方程表示：

 （5）

方程（5）中的可逆熵热（qrev）是由电化学反应引起的电极

活性物质的熵变产生的，仅存在于正负多孔电极中。

如方程（6）所示，电池模型的热边界条件仅考虑热传导和对

流，其中 λb 是电池的热导率，
Δ

T 是温度梯度，hconv 是对流换

热系数，Tamb 是设定为25° C 的环境温度。

 （6）

（四）模型参数分类

对电压、温度和容量输出响应进行参数辨识，以确定适用于

NCM/ 石墨电池的合理参数值范围，确保辨识出的参数保留其物

理意义。根据所建立的 ECAT 耦合机理模型，共有33个未知参数

需要辨识。这些参数分为两大类：静态和动态，涵盖了几何、传

输、动力学、浓度、热物理和老化参数。静态参数，包括不同区

域的厚度 Li、颗粒半径 Ri、化学计量数 θi、体积分数 εi 和初始

Li 离子浓度 ci 等，在电池未发生病理性变化（如严重过热、过度

老化、机械损伤等）的情况下通常保持不变。动态参数，如电极

的电导率 ρi、扩散系数 Di、电极的反应速率常数 ki 和 Li+ 迁移

数 t+，可能会在不同的运行条件和反应温度下发生变化。

二、数据驱动辅助的参数辨识方法

首先使用拉丁超立方采样（LHS）探索模型输入空间，对多

样化样本参数进行采样。随后，在各种运行条件下进行三维计算

流体动力学仿真，生成一个数据集。该数据集用于训练一个基于

ANN 的元模型，以模拟原始耦合机理，从而促进电池响应的快速

估算。然后，通过敏感性分析筛选出对模型输出有显著影响的参

数，从而降低参数辨识的维度。最后，应用 GA 迭代优化敏感参

数，以获得最佳模型参数，并通过实验验证模型响应。

（一）拉丁超立方采样

元模型训练数据集定义如下：令 X=[0,1]^n 表示 n 维超立方

体，即 ECAT 模型的输入空间，使用 LHS 方法对其进行采样 x = 

(x1, …,xn)，然后将训练输入数据排列成一个矩阵，该矩阵由 N 个

n 维输入向量组成，如下所示：

 （7）

（二）训练数据集

对于给定的实验设计矩阵，有限元仿真可以求解 ECAT 耦合

机理模型的不同输出。

 （8）

其中 D 表示收集的数据集，其中每个 x(i) 是 N 个样本中的第 i

个输入向量，M(x(i)) 是对应于该输入向量的模型输出。

（三）基于 ANN 的元模型

在构建元模型以模拟整个充放电循环中电池随时间变化的行

为时，采用了一种基于神经网络的方法来高效处理时间序列数

据。元模型的映射关系可以表示为：

 （9）

元模型能够准确预测 LIBs 的电压、老化和温度响应。随着更

多数据的可用，模型的准确性将进一步提高。

（四）敏感性分析

本研究使用元模型生成的数据进行敏感性分析，应用 Sobol

指数（SI）来衡量参数敏感性。一阶 Sobol 指标反映了单个参数的

单独变化对输出方差的贡献。高于0.2的值表示高敏感性，0.05到

0.2表示中等敏感性，低于0.05表示低敏感性。

（五）基于遗传算法的多目标参数辨识

GA 与元模型相结合为参数辨识提供了一种有效的方法。GA

通过交叉和变异迭代生成新的参数组合。每个个体的适应度使用

元模型进行评估。选定的参数集随后使用 ECAT 模型进行评估，

并重新纳入训练数据。当满足 ECAT 模型评估过程的仿真次数达

到120次或目标误差 e < 0.01时，优化终止。 

三、结果与讨论

（一）元模型验证

图2(a) 展示了在1C 放电倍率下，突显了参数对电压响应的影

响。在图2(b) 中，表明参数对温度有显著影响。图2(c) 展示了基

于表1中的老化参数和1C 倍率循环条件的电池容量归一化老化轨

迹曲线，变化范围从1到0.78。图2(d)-(f) 展示了验证结果，重点

关注中位数和5%-95% 的范围。图2(d) 显示，电压元模型的平均

RMSE 和 MAE 分别为0.0127和0.0012，表明模型具有高精度。

同样，图2(e) 和 (f) 中的平均温度和平均老化验证结果也显示出

较低的 RMSE（0.0712和0.0541） 和 MAE（0.0052和0.0071）

值，进一步证实了元模型在捕捉电池行为方面的有效性。

图2. (a)-(c) 不同参数下的电池仿真输出；(d)-(f) 元模型预测精度验证。

（二）敏感性分析结果

图3显示了在恒定1C 放电倍率下，每个模型参数与全局 SA

输出响应相关的 Sobol 指标。结果表明，对于电池电压响应，负

极颗粒半径 Rn 的敏感性值最高。
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图3. 电压、温度和老化轨迹参数 Sobol 指标的敏感性分析结果。

（三）参数辨识结果

图4所示的结果表明，MMGA 方法的预测值更接近实验值。

得益于经过敏感性分析的多步方法，通过专注于对模型输出影响

最大的关键参数并进行逐步精细化的优化过程，提高了参数辨识

的效率和准确性。

图4. 1C 放电倍率下不同方法的实验验证比较。
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四、结论

本文提出了一种在耦合的 ECAT 电池模型中快速且可靠地辨

识参数的方法。为应对 ECAT 模型的计算挑战，开发了一个数据

驱动的人工神经网络（ANN）元模型，以高效探索各种参数对电

池电压、温度和容量的影响。通过敏感性分析识别出最具影响力

的参数，从而简化优化过程。接着，集成了遗传算法来优化这些

参数，最小化模型预测与实验数据之间的差异。所提出的方法显

著减少了计算时间，同时确保了参数辨识的准确性。这使得开发

精确的锂离子电池模型成为可能，为先进的电池管理系统和高保

真的数字孪生奠定了基础。


