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摘   要 ：  大模型 Agent 融合多模态感知、强化学习框架及自主决策机制，可精准适配锂离子方壳电池制造的高能耗、多工序、

强耦合特性，解决现行能耗控制体系在动态工况响应滞后、多源数据融合不畅等瓶颈问题，实现极片干燥、电芯化

成、模组组装等核心工序的能耗实时优化与设备集群协同控制。本文以锂离子方壳电池制造全流程为研究场景，深

化大模型 Agent 的技术原理与工业适配性分析，结合实际生产案例验证其节能成效，同时针对实时性保障、异常容

错、可解释性等关键技术挑战提出解决方案。研究表明，大模型 Agent 可使锂离子方壳电池制造综合能耗降低 18%-

22%，为新能源行业能耗智能控制提供可落地的技术路径，未来数字孪生与物理信息融合技术的结合将进一步拓展其

应用边界。
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A b s t r a c t  :   Large Model Agents integrate multimodal perception, reinforcement learning frameworks, and 

autonomous decision-making mechanisms, which can accurately adapt to the high energy 

consumption, multi-process, and strong coupling characteristics of lithium-ion prismatic battery 

manufacturing. They solve the bottlenecks of the current energy consumption control system, such as 

lagging response to dynamic working conditions and poor multi-source data fusion, and realize real-

time energy consumption optimization and equipment cluster collaborative control in core processes 

such as pole piece drying, cell formation, and module assembly. Taking the whole process of lithium-

ion prismatic battery manufacturing as the research scenario, this paper deepens the analysis of the 

technical principles and industrial adaptability of Large Model Agents, verifies their energy-saving 

effects with actual production cases, and proposes solutions to key technical challenges such as real-

time guarantee, fault tolerance, and interpretability. The research shows that Large Model Agents can 

reduce the comprehensive energy consumption of lithium-ion prismatic battery manufacturing by 18%-

22%, providing a practical technical path for intelligent energy consumption control in the new energy 

industry. In the future, the combination of digital twin and physics-informed AI technology will further 

expand its application boundaries.

Keywords  :  large model Agent; intelligent industrial energy consumption control; lithium-ion prismatic 

battery manufacturing; multi-source data fusion; digital twin

引言

随着《工业节能与绿色发展 “十五五” 规划》《“十五五” 新型储能发展实施方案》等政策密集出台，新能源产业尤其是锂离子方壳电

池制造业的能耗管控已从 “合规性要求” 升级为 “核心竞争力指标”。锂离子方壳电池制造涵盖匀浆、涂布、辊压、分切、卷绕、装配、化成、

分容等 10 余道核心工序，其中极片干燥、电芯化成、模组焊接工序的能耗占比超 60%，且存在“工艺参数 - 能耗 - 品质”强耦合特性——

例如化成电流提升虽能缩短生产周期，但可能导致能耗激增与 SEI 膜稳定性下降，传统 PID 控制与专家系统难以实现多目标动态平衡。

大模型 Agent 凭借多模态感知的全数据覆盖能力、强化学习的动态优化能力、自主决策的实时响应能力，为锂离子方壳电池制造能

耗控制提供了新范式。本文以锂离子方壳电池制造全流程为核心场景，系统阐述大模型 Agent 的技术原理与工业适配性，深入分析其在

核心工序能耗优化与设备集群控制中的应用路径，针对实时性、容错性、可解释性等挑战提出技术解决方案，并结合实际生产案例验证

其节能成效，为新能源行业能耗智能控制提供理论支撑与实践参考。
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一、大模型 Agent 的技术原理与工业适配性

（一）大模型 Agent 的核心架构与能力升级

针对锂离子方壳电池制造的能耗控制需求，大模型 Agent 构

建 “感知 - 学习 - 决策 - 执行”四层核心架构，实现技术能力的

针对性升级：

1. 多模态感知层

全维度数据采集与解析突破传统传感器的单一数据采集局限，

整合三类关键数据：一是物理量数据，通过边缘网关实时采集涂布

机速度、化成柜电流电压、干燥烘箱温度等工艺参数（采集频率 

1-10Hz）；二是图像数据，通过机器视觉系统获取极片表面缺陷、

电芯焊接质量等视觉信息（分辨率 2000 万像素，帧率 30fps）；

三是文档数据，通过 NLP 技术解析 MES 系统中的工艺标准（如 

GB/T 31484-2015）、 质量检验报告等非结构化数据。通过模

态转换模块将多源数据映射至统一特征空间 —— 例如将化成电压

序列通过1D-Transformer 提取时序特征，将极片缺陷图像通过

CNN 提取视觉特征，为后续能耗分析提供完整数据基础 [1]。

2. 强化学习层

工艺机理约束的动态优化构建融合锂电池材料学原理的强化

学习框架，以 “能耗降低、品质达标、效率提升” 为三维优化目

标。在 reward 函数设计中，引入工艺约束权重：例如在化成工

序中，将“电压波动≤5mV”（关联 SEI 膜稳定性）的权重设为 

0.4，高于能耗（权重 0.3）与效率（权重 0.3）；在极片干燥工序

中，将“溶剂残留量≤0.3%”的权重设为0.35，确保优化决策优

先满足品质要求。同时，基于锂离子迁移动力学模型（如 Butler-

Volmer 方程）构建状态转移约束，避免模型陷入“能耗最优但品

质超标”的局部最优解 [2]。

3. 自主决策层

分层控制的实时响应采用“全局 - 局部”分层决策机制：全

局 Agent 负责工序间协同优化，例如根据匀浆工序的浆料黏度

数据，预判涂布工序的能耗基准值；局部 Agent 负责单工序参

数微调，例如当干燥烘箱温度波动超过 ±2℃时，局部 Agent 在

100ms 内调整热风风速。决策输出模块通过 OPC UA 协议与现场

设备直接交互，实现“决策 - 执行”的毫秒级响应，适配锂离子

方壳电池制造对动态工况的快速调整需求 [3]。

（二）锂离子方壳电池制造的能耗特性与技术适配

锂离子方壳电池制造的能耗控制面临三大核心挑战，大模型 

Agent 通过针对性技术设计实现精准适配：

表2.1 锂离子方壳电池制造的能耗特性与技术适配

能耗控制

挑战
技术痛点 大模型 Agent 适配方案

工序能耗

耦合性强

极片干燥能耗增加可能导致

化成工序能耗连锁上升

构建工序能耗关联图谱，通

过 GNN 挖掘耦合规律，实

现跨工序协同优化

能耗时变

性显著

生产负荷波动（如订单变

化）导致能耗动态变化

基于时序预测模型（TCN-

LSTM）提前1小时预测能

耗趋势，预置优化策略

能耗控制

挑战
技术痛点 大模型 Agent 适配方案

设备异构

性突出

涂布机、化成柜等设备

协议不统一（Modbus/

Profibus）

开发标准化协议转换模块，

实现设备数据统一接入与控

制指令下发

以极片干燥与电芯化成的能耗耦合为例：当干燥工序热风温

度从80℃升至85℃时，极片溶剂残留量降低0.2%，但会导致化成

工序的 SEI 膜形成电流密度增加 15%，传统控制方法易忽视这种

耦合关系。大模型 Agent 通过训练“干燥参数 - 化成能耗”关联

模型，在调整干燥温度时同步优化化成电流，实现两工序综合能

耗降低8%-10%[4]。

二、锂离子方壳电池制造能耗控制的现状与挑战

（一）现行控制体系的技术瓶颈

1. 动态工况响应滞后

传统 PID 控制在极片干燥工序中，需等待烘箱温度偏差超过

±3℃才启动调整，导致温度波动周期长达5-8分钟，溶剂残留

量波动范围扩大至0.2%-0.8%，额外增加能耗5%-7%。在电芯

化成工序中，专家系统依赖固定规则（如“恒流阶段电流固定为 

0.5C”），无法根据电芯初始电压（如3.0V vs 3.2V）动态调整参

数，导致不同批次电芯的化成能耗差异达12%[5]。

2. 多目标优化能力不足

锂离子方壳电池制造中，“能耗 - 效率 - 品质”的目标冲突

显著：例如涂布速度从4m/min 提升至5m/min，生产效率提高

25%，但极片厚度偏差从 ±1.5μm 扩大至 ±3μm，需增加干燥

能耗3%以降低溶剂残留量。传统控制方法采用“优先级排序”（如

优先保证品质），无法实现多目标 Pareto 最优，导致综合效益损

失10%-15%[6]。

（二）多源数据融合的实践困境

1. 数据碎片化严重

极片干燥工序的温度传感器（采集频率1Hz）、湿度传感器（采

集频率 0.5Hz）、溶剂残留检测仪（采集频率0.1Hz）数据不同步，

且格式差异大（如温度为数值型、溶剂残留为文本报告），传统数

据处理方法需2-3小时完成数据对齐，无法支撑实时能耗优化 [7]。

2. 信息孤岛现象

突出涂布机采用 Profibus 协议，化成柜采用 EtherNet/IP 协议，

MES 系统数据存储于 Oracle 数据库，设备与系统间无法直接交互。

例如涂布机的速度调整指令需人工录入 MES 系统后，再由 MES 下

发至化成柜，数据传输延迟达3-5分钟，导致能耗优化策略滞后 [8]。

三、大模型 Agent 在锂离子方壳电池制造中的典型

应用

（一）核心工序能耗实时优化

1. 极片干燥工序：温度 - 风速协同优化

极片干燥是锂离子方壳电池制造的高能耗工序（占总能耗
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20%-25%），其能耗与烘箱温度、热风风速、涂布速度强相关。

大模型 Agent 通过以下路径实现优化：

数字孪生建模：构建干燥烘箱数字孪生模型，融合热传导方

程（如 Fourier 定律）与流体力学模型，精准模拟“温度 - 风速 -

溶剂残留量”的映射关系，模型预测误差≤3%。

实时参数寻优：基于强化学习框架，动态调整温度曲线与风

速：当涂布速度提升至5m/min 时， 将入口区温度从80℃升至

83℃，热风风速从2m/s 提升至2.5m/s，同时降低出口区温度至

65℃，避免极片脆化。

案例验证：在某锂离子方壳电池工厂的电芯生产线中，应

用大模型 Agent 后，极片干燥工序的溶剂残留量稳定在0.3%-

0.5%， 能 耗 从1.2kW ·h/ ㎡ 降 至 0.95kW ·h/ ㎡， 节 能 率 达

20.8%，且干燥时间缩短15%[9]。

2. 电芯化成工序：电流曲线动态优化

化成工序是决定锂离子方壳电池寿命与能耗的关键环节（占

总能耗18%-22%），大模型 Agent 通过以下技术实现优化：

多阶段参数适配：将化成过程分为预充（0-5% SOC）、恒流

（5%-80% SOC）、恒压（80%-100% SOC）三阶段，基于电芯

初始电压与内阻动态调整电流：当初始电压＜3.0V 时，预充电流

降至0.08C，避免 SEI 膜破裂；当内阻＜50mΩ 时，恒流阶段电

流提升至0.6C，缩短化成时间。

电网负荷协同：结合电网峰谷电价（峰时1.2元 /kW ·h，

谷时0.3 元 /kW ·h）， 在谷时（23:00-7:00） 提升化成电流

至0.7C， 峰时（10:00-12:00） 降至0.4C， 实现能耗成本降低

35%。

案例验证：在某方壳电池生产线中，大模型 Agent 优化后

的化成工序能耗从 85kW ·h/ 吨降至68kW ·h/ 吨，节能率达

20%，同时电芯循环寿命从1200次提升至1500 次 [10]。

（二）设备集群协同控制

1. 化成柜集群：负载均衡优化

锂离子方壳电池工厂通常配置50-100台化成柜，传统控制方

式采用 “均分负载” 策略，易导致部分化成柜因电芯状态差异（如

高内阻电芯集中）而能耗激增。大模型 Agent 通过以下技术实现

协同控制：

分布式协商机制：每台化成柜部署局部 Agent，实时共享电

芯内阻、电压等状态数据，全局 Agent 基于“能耗 - 负载”均衡

算法，将高内阻电芯分配至冗余功率充足的化成柜，避免单台设

备过载。

动态功率调整：当电网负荷超过额定功率的90% 时，全局

Agent 触发“功率削峰”策略，将部分化成柜的恒压阶段时间从

2h 延长至2.5h，确保总功率不超限，同时避免品质波动。

案例验证：某工厂60台化成柜应用大模型 Agent 后，单台设

备能耗波动从 ±15% 降至 ±5%，集群综合能耗降低12%，年节

电超400万千瓦时 [11]。

2. 模组焊接设备集群：能耗协同调度

模组焊接工序包含激光焊接机、点焊机等设备，总能耗占模

组制造环节的 40%。大模型 Agent 通过以下技术实现协同优化：

生产排程联动：基于订单交付周期，优先安排高能耗的激光

焊接任务在谷时进行，点焊机等低能耗设备在峰时运行，实现能

耗成本降低28%。

参数协同调整：当激光焊接机的焊接功率从3000W 提升至

3200W 时，同步调整点焊机的焊接压力从0.8MPa 降至0.7MPa，

确保模组总电阻达标（≤5mΩ），同时避免总能耗增加。

案例验证：某模组生产线应用大模型 Agent 后，焊接工序能

耗从2.5kW ·h/ 模组降至2.1kW ·h/ 模组，节能率达16%，且

焊接不良率从1.2% 降至0.3%[12]。

四、关键技术挑战与解决路径

（一）实时性保障：轻量化与边缘 - 云协同

1. 轻量化模型部署

针对锂离子方壳电池制造设备的计算资源限制（如边缘网关

内存≤8GB），采用知识蒸馏与模型裁剪技术：将百亿参数的大

模型蒸馏为10亿级参数的轻量化模型，保留“工艺参数 - 能耗”

关联的核心特征提取模块；通过通道裁剪去除冗余卷积层，模型

计算量降低60%，推理时间从500ms 缩短至80ms，满足极片干

燥、化成等工序的实时控制需求 [13]。

2. 边缘 - 云协同架构

构建“边缘计算 + 云端优化”的分层架构：边缘端部署轻量

化模型，负责极片厚度偏差、化成电压波动等实时数据的快速处

理（响应时间≤50ms）；云端部署完整模型，基于历史数据（如

3个月的能耗与品质数据）进行离线训练，每月向边缘端推送优

化后的模型参数。通过5G 切片技术实现边缘 - 云数据传输延迟

≤10ms，确保控制指令实时下发 [14]。

（二）安全可靠性：异常容错与可解释性

1. 异常工况自主容错

融合集成自注意力机制与马尔可夫决策过程（MDP）：通过

自注意力机制强化对异常数据的捕捉（如传感器突然断连、电压

突降）；基于 MDP 构建故障应对策略库，例如当化成柜电流传感

器故障时，自动切换至电压 - 时间曲线推导电流值，确保能耗控

制精度偏差≤5%。同时，采用多传感器数据融合（如3个温度传

感器交叉验证），降低单一设备故障的影响 [15]。

2. 决策过程可解释性增强

应用反事实推理与领域知识融合技术：例如当大模型 Agent

将化成电流从 0.5C 调整至0.6C 时，通过反事实推理生成解释链：

“初始电压3.2V（高于均值 3.1V）→提升电流至0.6C 可缩短化成

时间1h →能耗降低8%，且电压波动≤4mV（满足品质要求）”；

结合锂电池材料学知识（如“高初始电压电芯 SEI 膜形成速度更

快”）验证解释合理性，生成可视化报告供工程师参考，提升决

策信任度 [16]。

（三）系统工程实施：数据治理与人机协同

1. 工业物联网数据治理

制定锂离子方壳电池制造的数据治理标准：一是数据清洗，

采用基于工艺机理的异常值剔除（如极片厚度偏差＞ ±5μm 判定
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为异常），数据清洗准确率提升至98%；二是数据对齐，基于时

间戳插值算法（如线性插值）将不同频率数据统一为 1Hz，数据

对齐时间从2h 缩短至5min；三是特征工程，提取 “温度波动系

数”“电流稳定性指标” 等20个能耗相关特征，为模型训练提供

高质量输入。

2. 人机协同接口设计

开发 Web-based 可视化平台，包含三大功能模块：一是能耗

监控面板，实时展示各工序能耗曲线与节能成效（如“化成工序

今日节能120kW ·h”）；二是决策干预接口，当工程师发现模

型决策异常时，可通过滑块调整参数（如将干燥温度从83℃调整

至82℃），系统自动记录干预结果并反馈至模型进行增量训练；

三是置信度提示，在参数调整建议旁标注置信度（如“涂布速度

建议5m/min，置信度92%”），辅助人工判断。平台支持手机、

PC 多终端访问，实现7×24小时能耗监控。

五、总结与展望

大模型 Agent 通过多模态感知、强化学习、自主决策的技术

融合，为锂离子方壳电池制造能耗控制提供了突破性解决方案：

在核心工序优化中，实现极片干燥能耗降低20.8%、化成能耗降低

20%；在设备集群控制中，实现化成柜集群能耗降低12%、模组

焊接能耗降低16%，全流程综合能耗降低18%-22%，同时保障产

品品质与生产效率提升。

当前，大模型 Agent 在工业应用中仍面临工程化部署成本高

（单条生产线改造成本超500万元）、跨场景迁移能力不足（如

从方壳电池迁移至软包电池需重新训练模型）等问题。未来，可

从三方面深化研究：一是数字孪生与物理信息融合，构建“虚实

交互”的能耗优化环境，减少物理试错成本；二是轻量化模型的

跨场景迁移，提取锂电池制造的共性能耗特征，实现模型快速适

配；三是绿色算力支撑，采用低功耗边缘芯片，降低模型运行能

耗。随着技术迭代，大模型 Agent 有望成为新能源行业能耗智能

控制的核心引擎，推动工业绿色低碳转型。
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