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Abstract :

The rapid advancement of artificial intelligence technology has imposed unprecedented demands for
innovation in probability and statistics education. Current traditional curricula face challenges such as
disconnect between theory and application, lack of practical teaching cases, and insufficient hands—
on classroom activities, making it difficult to cultivate students' ability to translate probability models
into solutions for real-world problems. To address this challenge, this study systematically constructs
a Naive Bayes classification teaching case based on the TREC Public Corpus dataset comprising
75,419 authentic emails. Utilizing Python toolchains, the entire teaching process—from email parsing
and text preprocessing to feature engineering and probabilistic decision-making is fully implemented.
This enables students to dynamically modify email content and observe real-time changes in the
Naive Bayes posterior probability. By integrating artificial intelligence technology, students gain insight
into the concrete practical applications of theoretical knowledge.

Empirical research findings indicate that the model demonstrated high overall accuracy across 22,607
test emails, with outstanding precision in identifying both spam and legitimate messages. Feature

importance analysis revealed that “pill” appears significantly more frequently in spam emails than
in legitimate ones, while commercial terms like ‘per’ and “desjardin” form key discriminative
patterns. In the teaching experiment, students successfully reduced spam probability by adding work—

related vocabulary like “meeting,” intuitively validating the collaborative decision—-making mechanism
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between prior distribution and likelihood probability. A comparative study involving 223 students

divided into a case-based teaching group and a traditional teaching group was conducted.

Independent samples t-test results showed that the case—-based teaching group achieved

significantly higher final scores than the traditional teaching group, with the difference reaching

statistical significance. The average score improved by 5.30 points, and the pass rate increased by

16.8 percentage points.

This case study transforms abstract theories such as conditional probability and the law of total

probability into practical tools, significantly enhancing students' ability to construct probability models

for solving complex problems. It breaks through the cognitive limitations of traditional teaching

methods focused on formula memorization and mechanical calculations, achieving a leap from

theory to application.
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Figure 1: Workflow Diagram of the Bayesian Spam Classifier
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Table 1: Most Significant Spam Feature Words

price

2 IR BATSg RS IEFRER HEE
1 pill 0.015147 0.000135 0.015012
2 per 0.01213 0.000636 0.011494
3 desjardin 0.010682 0.000001 0.010681
4 price 0.00892 0.001744 0.007176
5 item 0.007833 0.000746 0.007087
6 save 0.007351 0.000803 0.006547
7 product 0.006641 0.001262 0.005379
8 votr 0.005221 0.000003 0.005219
9 viagra 0.004886 0.000014 0.004872
10 onlin 0.005584 0.000798 0.004786
11 transact 0.004852 0.000176 0.004676
12 vou 0.004579 0.00001 0.004569
13 anatrim 0.004123 0.000001 0.004123
14 retail 0.003755 0.000117 0.003638
15 ciali 0.003478 0.000005 0.003473
16 men 0.003541 0.000169 0.003372
17 buy 0.003652 0.000409 0.003242
18 money 0.003602 0.000429 0.003173
19 qualiti 0.003251 0.00025 0.003001
20 adob 0.002984 0.00007 0.002914
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Figure 2 : Analysis of TOP Spam Keywords
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Figure 3: Distribution of the TOP 30 High—Frequency Words in Email Content
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Figure 4: Confusion Matrix of the Naive Bayes Classifier
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Table 3: Descriptive Statistics Comparison of Student Performance
Across Different Teaching Modes
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Figure 5: Visualization of Teaching Effectiveness Evaluation
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Table 4: Statistical Test Results for Inferring the Effects of Teaching
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