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线性秘密共享中的自对偶结构
林群

韩山师范学院数学与统计学院，广东 潮州  521041

DOI:10.61369/ASDS.2026010008

摘      要  ：  �线性秘密共享方案（LSSS）是现代密码学中支撑安全多方计算与密码协议的关键基础。本文旨在系统性地构建一个基

于线性码的 LSSS 理论框架。首先，形式化线性秘密共享方案，阐述了份额生成与秘密重构的算法流程。其次，阐明

了线性码的理论基础，明确了生成矩阵与校验矩阵的核心作用。本文的贡献在于探讨了自对偶码的数学性质，并通过

一个具体的二元域实例加以验证。自对偶码因其内在的对称性和优美的结构，为构建高效安全的线性秘密共享方案提

供了理论工具，在信息安全及相关领域中具有重要的应用价值。
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Abstract  :   �Linear secret sharing schemes (LSSS) are a fundamental cornerstone of modern cryptography, 

underpinning secure multi-party computation and cryptography protocols. This paper aims to 

systematically construct a theoretical framework for LSSS based on linear codes. First, we formalize LSSS 

and elaborates on the algorithmic processes for share generation and secret reconstruction. Second, 

we clarifies the theoretical foundations of linear codes, emphasizing the central role of generator and 

parity-check matrices. The contribution of this work lies in exploring the mathematical properties of self-

dual codes and validating them through a concrete example over the binary field. Owing to their inherent 

symmetry and elegant structure, self-dual codes provide a theoretical tool for constructing efficient and 

secure LSSS, holding significant application value in information security and the related fields.
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引言

完美保密的秘密共享是现代密码学的核心技术之一，为信息的安全分布式存储与计算提供了根本保障。其核心思想是将秘密值分解

为多个份额并分发给一组参与者，确保只有经过授权的参与者集合能够联合恢复该秘密，而任何未授权的集合则无法获取关于秘密的任

何信息 [1-5]。在众多秘密共享方案中，线性秘密共享方案因其线性同态特性备受关注，它最初由 Jackson 与 Martin 提出 [6]。该类方案中，

份额的计算与授权集合中秘密的恢复仅依赖于线性映射和线性方程组的求解 [7-9]，因此具有计算高效的特点。此外，其同态特性使得该

方案能够支持安全多方计算、门限密码等高级密码协议 [10-12]，从而在隐私计算和数据安全领域发挥着至关重要的作用。

线性秘密共享方案的构造由生成矩阵与访问结构共同定义。生成矩阵不仅通过线性变换将秘密与随机数映射为各参与者的份额，还内

在刻画了方案的访问结构，即明确哪些参与者子集能够重构秘密 [13]。这种将访问结构嵌入线性代数框架的表示方式，深刻揭示了秘密共享

与编码理论之间的内在联系 [14、15]。具体而言，线性秘密共享方案可视为一类特殊的线性码，其中有效的码字对应由合法秘密生成的合法份

额集合。

在编码理论中，自对偶码因其独特的对称性与优美的数学结构而受到广泛关注。自对偶码要求线性码与其对偶码完全重合，这一强

约束条件使得其生成矩阵与校验矩阵具有同一性，并衍生出一系列非平凡性质。这种内在的高度对称性，使自对偶码成为构建具备高效

性与安全性的秘密共享自对偶结构的理想工具。

本文旨在系统阐述基于线性码（尤其是自对偶码）的线性秘密共享方案框架。首先，将介绍线性秘密共享方案的形式化定义、份额

生成与秘密重构算法，并深入分析其线性性质与同态特性。随后，阐述线性码的基本理论，重点说明生成矩阵与校验矩阵在描述线性码

及其对偶关系中的核心作用。最后，聚焦于自对偶码，详细分析其数学性质，并结合具体实例加以说明，同时进一步阐明该类方案在安

全多方计算等高级密码协议中的应用潜力及其与其它研究领域的深刻联系。
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一、预备知识

（一）线性秘密分享方案的形式化描述

 定义1.（线性秘密分享方案）

一个在域 pF 上关于参与者集合 1 mP={U , ,U } 的线性秘密分享方

案（LSSS）由以下两个核心组件完全定义 [8]：

1. 生成矩阵 l mM × ：其中1 ( 行数 ) 指秘密向量 2 3 lv=(s,r ,r , ,r )

的维度，S 是真正的秘密， 2 3 lr ,r ,...,r 是随机数，用于隐藏秘密。

m( 列数 ) 指参与者的数量，也等于生成的份额数量。

2. 单调访问结构 2PΓ ⊆ : 这是一个参与者子集的集合，定义了

哪些参与者组合可以合法地重构出秘密。它必须满足单调性 : 即若

A B⊆ 且 A∈Γ , 则必有 B∈Γ 。

（二）份额生成算法

算法1.LSSS 份额生成

- 输入 : 秘密 ps∈F ，

- 输出 : 份额向量 m
1 2 m p(s ,s , ,s ) F∈

。

步骤 :

1. 构造秘密向量 ( )2 3, , , , l
l ps r r r= … ∈v F ，其中 2 3, ,..., lr r r 为均匀

随机选择的随机数。

2. 计算份额 ( )1 2, , , ms s s M… = ⋅v ，并将份额 is 分配给参与者 iU  

( 1,2, ,i m= … )。

（三）访问结构的矩阵表征

生成矩阵 M 不仅定义了如何生成份额，还隐式地定义了访问

结构（即哪些参与者集合可以恢复秘密）。

定 义2.（ 授 权 集 [8]） 对 于 生 成 矩 阵 l m
pM ×∈F ， 参 与 者 子 集

A P⊆ 称为授权集，当且仅当存在系数向量 ( )1 2, , , A
pAc c c= … ∈Fc , 使得

(1,0,0,...,0)T
AM ⋅ =Tc . 其中 AM 表示矩阵 M 中对应于集合 A 的列的

子 矩 阵。 访 问 结 构 Γ 即 为 所 有 授 权 集 的 集

合 { }| (1,0,0,...,0)A T
p AA P MΓ = ⊆ ∃ ∈ ⋅ =F 满足 Tc c 。

（四）秘密重构算法

算法2.LSSS 秘密重构

- 输入 : 授权集 A∈Γ 及其份额{ }i i As ∈ ，

- 输出 : 秘密 .ps∈F
步骤 :

1. 求 解 线 性 方 程 组 (1,0,0,...,0)T
AM ⋅ =Tc ， 得 到 重 构 系

数 ( )1 2, , , Ac c c= …c .

2. 计算秘密：

i i
i A

s c s
∈

=∑
即秘密可以通过将授权集中的份额进行线性组合恢复出来。

（五）线性性质

LSSS 满足以下线性性质 [8]：

1. 份额生成线性：每个份额 ( )1,2, ,is i m= … 是秘密 s 和随机数

jr  ( 2, ,j l= … ) 的线性函数。

2. 秘密重构线性：秘密 s 可表示为授权份额{ }i i As ∈ 的线性组

合，其中 A∈Γ .

3. 同态性：假定两个秘密 's s， 的对应份额分别为{ }i i As ∈ , { ' }i i As ∈ ，

则{ ' }i i i As s ∈+ 是秘密 's s+ 对应的有效份额。

二、基于线性码的 LSSS框架

定义3.（线性码 [8]）设 pF 是一个包含 p 个元素的有限域，其

中 p 为素数。一个参数为[ ],n k 的线性码 C 是向量空间 n
pF 的一个 k

维线性子空间。其中 n 称为码的长度，即码字的长度。 k 称为码

的维数，即子空间的维度。码中的码字总共有 kC p= 个。

一个线性码C 可以由以下两种矩阵之一完全描述： 

（一）生成矩阵

设 { }1 2, , , n
k pg g g F… ⊂  是子空间 C 的一组基。将其作为行向量，

构成一个 k n× 的矩阵G ，称为码C 的生成矩阵，即

1 11 12 1

2 21 22 2

1 2

n

n

k k k kn

g g g g
g g g g

G

g g g g

   
   
   = =
   
   
   





    



码 { }n k
p pC u G F u F= ⋅ ∈ ∈∣ 可以由其生成矩阵 G 线性生成，即信

息向量 u 通过线性变换G 被编码为码字 c u G= ⋅ 。

（二）校验矩阵  

作为一个 k维子空间，线性码C 在 n
pF 中的对偶空间（或零化空

间）是 n k− 维的。这个对偶空间本身也是一个线性码，记为C⊥，

称为 C 的对偶码 [8]。设C⊥ 的一组基为{ }1 2, , , n kh h h −… ，将这些基向

量作为行， 形成一个 ( )n k n− × 的矩阵 H ， 称为码 C 的校验矩

阵。即

1

2

n k

h
h

H

h −

 
 
 =
 
 
 



码C 可以等价地定义为校验矩阵 H 的零空间：

{ }0n T n k
p pC c F H c F −= ∈ ⋅ = ∈∣

这种对偶关系在秘密共享中有重要应用：若线性码 C 定义一

个线性秘密分享方案 S , 则C⊥对应 S  的对偶方案 *S 。

（三） 生成矩阵与校验矩阵的关系

如果一线性码C 有一个 k n× 的生成矩阵G ，那么它就存在一

个 ( )n k n− × 的校验矩阵 H ，使得 0TH G⋅ = 或者 0
T

G H⋅ = .

这意味着生成矩阵 G 的所有行向量都与校验矩阵 H 的所有行

向量正交。

结论：1. 校验矩阵 H 其实就是对偶码C⊥的生成矩阵。

2. 码C 由G 的行张成，而对偶码C⊥由 H 的行张成。

三、自对偶码

定义4.（自对偶码 [8]) 如果一个码 C 满足 C C⊥= ，则称 C 为一
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个自对偶码。这意味着：一个向量是 C 的一个有效码字，当且仅

当它与C 中的每一个码字都正交，即点积为零。

从定义C C⊥= 可以推导出以下性质：

性 质1： 自 对 偶 码 的 码 字 长 度 n 必 须 是 偶 数， 并 且 其 维

度
2
nk = 。

证：设一个码 C 的长度是 n ，维度是 k ，则它的对偶码的维

度是 n k− 。

由于C C⊥= ，它们的维度必须相等，即 k n k= − ，

从而推出
2
nk = ， n 必为偶数。

性质2：生成矩阵与校验矩阵本质一致。

证：由于C C⊥= ，生成矩阵G 能张成C ，也必能张成C⊥，

而C⊥的生成矩阵是原码C 的校验矩阵 H 。

因此，生成矩阵 G 和校验矩阵 H 在本质上是同一个矩阵，它

们张成相同的行空间。所以，通常使用同一个矩阵 G 来同时担任

生成和校验的角色，即G H= 。

性质3：生成矩阵G 必须满足正交性 0TGG = 。

证：生成矩阵 G 和校验矩阵 H 满足 0
T

GH = ，又由性质2，知

G H= ，从而推出 0GG =• 。

例：在二元域  构造生成矩阵
1 0 0 1
0 1 1 0

G  
=  
 

，

有 
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0

T

GG   
=   
  

•
=

0 0
0 0
 
 
 。

给定 2F  上向量 1 2( , )u u=u ，计算码字 c G= ⋅u ，推出

{ } ( ) ( ) ( ) ( ){ }2
2 0,0,0,0 , 1,0,0,1 , 0,1,1,0 , 1,1,1,1C G F= ⋅ ∈ =u u∣

可以检验C 中的码字两两正交，所以C 是自对偶码。

对于一个自对偶的 LSSS，其访问结构Γ  满足：一个集合是

授权集，当且仅当它的补集是禁止集。

自对偶码具有强烈的内在对称性，这使其在理论和应用上成

为一个非常强大的工具。它具有重要的应用价值：

1. 优美的对称性：它具有极其优美的数学结构，这使其更容

易分析和实现。

2. 在密码学中的应用：它是构建自对偶线性秘密分享方案的

基础，并能提供最优的效率和安全性，所以经常应用在安全多方

计算和其它高级密码协议中。

3. 与其它领域的联系：自对偶码与群论、组合设计、甚至量

子计算中的稳定子码都有着深刻的联系。

四、结束语

本文系统阐述了线性秘密分享方案（LSSS）的形式化定义、

基于线性码的理论框架，以及自对偶码所蕴含的完美对称性与重

要价值。这不仅为密码方案的设计提供了坚实的数学基础，也为

其在安全多方计算等前沿密码协议中的高效实现开辟了道路。这

一理论体系充分体现了代数方法在构建安全高效的可计算秘密共

享机制中的核心作用，也为后续研究更复杂的访问结构以及跨领

域的应用衔接提供了清晰的理论视角。
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