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Abstract : Existing studies on causal machine learning proposes methods for identifying the Average Treatment
Effect for heterogeneous groups (GATE), failed to account for the heterogeneity of treatment effects
across different groups under varying covariates. To address this issue, this paper proposes the
Balanced Group Average Treatment Effect (BGATE) based on Double Machine Learning (DML) to
measure the Group Average Treatment Effect (GATE) with predetermined specific distributions of
covariates. By calculating the difference between two BGATE values, the GATE values of two groups
can be compared, thereby better identifying the heterogeneity of causal effects. Ultimately, this
approach distinguishes between differences caused by varying distributions of covariates and those
caused by explanatory variables. The estimator exhibits ./ — consistency and asymptotic normality
under standard conditions. A comparison of simulation results from three estimation methods—the
DML, the Auto-DML, and the Reweighting approach —shows that if DML is known to have no
performance issues (e.g., when the propensity score is not extreme), the DML estimator is
recommended, as it performs best in simulations. If DML is known to have performance issues, the
Auto—-DML estimator or the reweighting approach is recommended.

Keywords : moderation effect; debiased machine learning; reweighting approach; heterogeneity;
balanced group average treatment effect
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