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摘      要  ：  �既有因果机器学习的相关文献所提出的用于识别异质群体的平均处理效应（GATE）的方法未能考虑在协变量变化的

情况下解释不同群体间处理效应的异质性。为了解决该问题，本文提出基于无偏机器学习（DML）的平衡组平均处理

效应（BGATE）来衡量具有预先确定的协变量特定分布的组平均处理效应（GATE），通过计算两个 BGATE 之间的

差值来比较两个GATE的值，从而更好地识别因果效应的异质性，最终将由协变量不同分布所导致的差异与由解释变

量所导致的差异区分开来。该估计量在标准条件下具有 N −一致性和渐近正态的性质。通过对比DML、自动无偏机

器学习（Auto-DML）和重新加权（Reweighting Approach）三种估计方法的仿真结果可知：如果已知DML没有性

能问题，如当倾向得分很极端时，建议采用 DML 估计量，其模拟表现最好；如果已知 DML 有性能问题，建议采用

Auto-DML 估计量或重新加权方法。

关  键  词  ：  �调节效应；无偏机器学习；重新加权方法；异质性；平衡组平均处理效应
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Abstract  :   �Existing studies on causal machine learning proposes methods for identifying the Average Treatment 

Effect for heterogeneous groups (GATE), failed to account for the heterogeneity of treatment effects 

across different groups under varying covariates. To address this issue, this paper proposes the 

Balanced Group Average Treatment Effect (BGATE) based on Double Machine Learning (DML) to 

measure the Group Average Treatment Effect (GATE) with predetermined specific distributions of 

covariates. By calculating the difference between two BGATE values, the GATE values of two groups 

can be compared, thereby better identifying the heterogeneity of causal effects. Ultimately, this 

approach distinguishes between differences caused by varying distributions of covariates and those 

caused by explanatory variables. The estimator exhibits N − consistency and asymptotic normality 

under standard conditions. A comparison of simulation results from three estimation methods—the 

DML, the Auto-DML, and the Reweighting approach -shows that if DML is known to have no 

performance issues (e.g. ,  when the propensity score is not extreme), the DML est imator is 

recommended, as it performs best in simulations. If DML is known to have performance issues, the 

Auto-DML estimator or the reweighting approach is recommended.
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引言

一个特定的变量是否导致处理效果的差异称为因果调节变量。除了平衡所有协变量混淆组间调节效应的分布外，还必须进行其他假

设来解释因果关系的处理效应的差异，只有这样组变量才可以被认为是一个不混杂的调节因素。机器学习方法不仅可以融入传统计量方

法来改进因果推断计量方法，还可以采用数据驱动以考虑广泛的模型，从而避免模型设定错误。因此，机器学习在因果推断经济学中的

应用有着重要现实意义。

本文聚焦于无混淆设定下组间处理效果差异的估计方法研究。首先，提出平衡组平均处理效果（BGATE），该参数是基于预先确

定的协变量特定分布的组平均处理效应（∆GATE），通过计算两个 BGATE 的差值（同样记作 BGATE），能够有效实现组间处理效果

的对比。本文展示 BGATE 它如何与两个组平均处理效应的差异（∆GATE）相关，讨论了它的识别方法，并提出了不同的估计量来描

述离散调节因素（为了简单起见，本文将发现异质处理效应的变量称为调节因素）和离散处理。关于无偏机器学习的估计量（Debiased 

Machine Learning，DML)（Chernozhukov 等，2018）[1]，本文证明了该估计量在真实值处渐近正态分布，是一个有效的统计量。此

外，本文还将 DML 方法与自动无偏机器学习（Auto-DML）和重新加权方法（Reweighting Approach）估计 ∆BGATE[2] 的结果进行

对比。DML 依赖于使用一个基于倾向得分的双重稳健评分函数，如果倾向得分极端，这可能会出现问题（Lechner 和 Mareckova，

2024[3]；Frolich，2004[4]）。因为 Auto-DML 使用 Riesz 表示而不是倾向得分，所以 Auto-DML 不会受到极端倾向得分的问题影响

（Chernozhukov 等，2021[5]；Chernozhukov 等，2018[1]）；重新加权方法允许用户使用任何他们偏好的方法来估计 ∆BGATE，因为

∆BGATE 等于重新加权数据上的 ∆GATE。这两种估计方法是有效的（郭峰和陶旭辉，2023）[6]。

本文其余章节安排如下：第一节对相关领域文献进行综述，第二节定义了因果调节框架；第三节给出了 DML 估计量的渐近性质；

第四节报告了样本规模为500的蒙特卡罗仿真设计和结果；第五节对全文进行总结归纳，得出研究结论。

一、文献综述

既有研究探讨了如何在组水平上检测（低维）异质性，称为

“组平均处理效应”（GATEs 是一种条件平均处理效），目前已经

开发了几种方法来估计 GATEs。例如，Abrevaya 等（2015）[7]

展示了如何在无混杂条件下非参数识别 GATEs，并使用逆概率加

权估计量对其进行估计。Lechner（2018）[8] 改进了一种随机森林

算法，以调整混淆因素从而来估计异质性处理效应。Semenova 和

Chernozhukov（2021）[9] 使用 DML 框架来寻找基于线性模型的

异质性。Zimmert 和 Lechner（2019）[10] 以及 Fan 等（2022）[11]

开发了一个两步估计量，允许非参数估计 GATEs。第一步是使用

机器学习方法估计，第二步是应用非参数局部常数回归。

本文通过提出 ΔBGATE 估计量以刻画不同组间处理效果

差异，即，在平衡一些协变量的分布的同时，比较两组的处理效

果。若研究目的聚焦于识别处理结果中赢家与输家的特征，该方

法具有较高适配性；然而，当核心诉求在于量化某一变量对两组

处理效果差异的影响程度时，该方法则更具针对性与有效性。

DML 框架由 Chernozhukov 等（2018）[1] 提出，该框架使用

机器学习的方法来进行因果分析。机器学习算法可能会引入两种

偏差：正则化偏差和过拟合偏差。DML 的主要思想是，通过使用

奈曼正交得分函数（Neyman-orthogonal score functions）以克

服正则化偏差。既有文献已经将根据不同的设置调整了通用 DML

框架用于中介分析（Farbmacher 等，2022）[12]。本文通过使用这

个框架来估计因果调节效应来为该领域的文献做出贡献。

二、因果调节框架

（一）定义

本文使用的因果调节框架是基于（Rubin，1974）[13] 的潜在

结果框架。因果效应被定义为两个潜在结果之间的差异，而对于

一个个体，本文只能观察到两个潜在结果中的一个。因此，找到

一个可信的反事实是很棘手的。我们观察到来自独立随机变量

( , , , )i i i i iH D Y Z X= 的 N 个独立同分布的样本，它们以未知概率的分

布 P 来抽取。重点在于处理变量 iD 和调节变量 iZ 。为简单起见，

假设它们是二元的（处理变量的结果为 {0,1}d ∈ ，调节变量的结果

为 {0,1}z∈ ）。与既有研究中的设定一样，潜在结果由处理变量索

引： 0 1( , )i iY Y  。最后，一组 {0, , }k p∈  协变量 ,i kX 可能同时影响处理

和潜在的结果，其中 ( ,1, , , )i i iX X X p=  。此外，潜在的协变量和

潜在的调节因子被定义为： 0 1 0 1( , , , )i i i i iX X X Z Z=  。

由于只能观察到一种潜在结果的实现，因此我们永远无法一

致地估计个体处理效应（ITE） 1 0
i i iY Yξ = − 的实现。然而，在适当

的假设下，平均处理效应（ATE） 1 0[ ]i iE Y Yθ = − 的识别是可能的

（Imbens 和 Wooldridge，2009）[14]。另外，为了进一步研究 iξ 异

质性的不同方面，可以通过条件平均处理效应（CATE）来捕

捉。CATE 测量了一组（子）协变量 iX 条件下的平均处理效果。

个体化平均处理效果（IATE）和组平均处理效果（GATE）都是

特异性的 CATEs。IATE 在最精细的聚合水平上测量处理效果。

也就是说，它比较了所有个体的平均处理效果与所有相关协变量

的特定值。在形式上，IATE 被定义为
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( ) 1 0, E | ,i i i ix z Y Y Z z X xτ  = − = =                  （1）

GATE 测量组间处理效果，即在比 IATE 更聚合的水平上且

比 ATE 更精细。GATE 定义为	

1 0[ | ] [ ( ,0) | 0]G
i i iE Y Y Z E X Zθ τ= − = = =( z)        （2）

如 果 仅 仅 刻 画 处 理 效 应 的 异 质 性， 那 么 采 用 IATEs 和

GATEs 就足够了。如果识别两组之间的处理效果差异，那么需要

采用两组 GATE 之间的差异（ΔGATE），即 

1 0 1 0[ | 1] [ | 0]
[ ,1) | 1] [ ,0) | 0]

G
i i

i i i i

E Y Y Z E Y Y Z
X Z X Z

θ
τ τ

∆ = − = − − =
= = − =（（

             （3）

然而，因为两组在协变量 iX 的分布上可能存在差异，通常该

效应难以解释。因此，本文引入平衡组平均处理效应（BGATE）

以平衡本文想要相互比较的各组（由不同 iZ 值定义）中其他变量

的分布。用于平衡 GATEs 的变量表示为 iW 。 iW 是 iX 的一部分。

如果 iW 为空集，或 iW 独立于 iZ ，则 BGATE 减少为 GATE。因

此，新的感兴趣的参数，即用 ( )B zθ 表示，被定义为 

1 0( ) [ [ | , ]] [ [ ( , ) | , ]]B
i i i i i i iz E E Y Y Z z W E E X z Z z Wθ τ= − = = =       （4）

以及其差异

1 0 1 0[ [ | 1, ]] [ | 0, ]]
      [ [ ( ,1) | 1, ] [ ( ,0) | 0, ]]

B
i i i i i i i i

i i i i i i

E E Y Y Z W E Y Y Z W
E E X Z W E X Z W

θ
τ τ

∆ = − = − − =
= = − =

      （5）

其中，Δ BGATE（ Bθ ）表示两组之间的差异，将两组中协

变量（ iW ）的分布调整为总体人群分布。Δ BGATE 通常显示出

调节效应。平衡组平均处理效应（ΔBGATE） 作为调节因果

效应。

（二）效应分解

为了明确 Δ GATE 和 Δ BGATE 之间的区别，Δ GATE 被

分解为两个组成部分：ΔBGATE，代表调节变量的直接效应，以

及由各组间 iW 分布的差异引起的组合效应组，组合成分根据其相

对重要性对两个 iZ 子样本进行加权，以捕捉 iW 分布的差异：

      （6）

这种分解用于将两组之间结果差异分解为两个部分：一部分

是由于协变量分布的差异所致，另一部分是由于感兴趣的变量所

致。本文关注总体而非特定部分。虽然 Δ BGATE 是使用协变量

iW 的无条件分布来定义的，但是 Δ BGATE 也可以使用条件分布

| 1i iW Z = =1和 | 0i iW Z = 来定义。

（三）识别

为了在不混杂的环境中识别 GATE、BGATE、Δ GATE 或

Δ BGATE，通常需要识别假设（例如，Imbens，2004）[15]，具

体如下：

假设1

（1）条件独立性：

1 0( , ) | , , ,i i i i iY Y D X x Z z x X z Z⊥ = = = ∀ ∈ ∀ ∈

（2）共同支持： 0 ( | , ) 1i i iP D d X x Z z< = = = < ,

{0,1}, ,d x X z Z∀ ∈ ∀ ∈ ∀ ∈  ,

（3）混杂因子的外生性： 0 1 0 1, , ( )i i i iX X Z Z d= = ,

（4）稳定的单位处理值假设：

1 0(1 )i i i i iY D Y D Y= + −                        （7）

定理1

在假设1下，参数

1 0( ) [ [ | , ]]B
i i i iz E E Y Y Z z Wθ = − =             （8）

被识别为 

1 0[ [ ( ) ( ) | , ]]i i i i i iE E Z X Z X Z z Wµ µ− − − =            （9）

其中

( , ) [ | , , ]d i i i iz x E Y D d Z z X xµ = = = =                 （10）

因此 

1 0 1 0[ [ | 1, ] [ | 0, ]]B
i i i i i i i iE E Y Y Z W E Y Y Z Wθ ∆ = − = − − =     （11）

已识别为

	
1 0 1

0

[ [ ( ) ( ) | 1, ] [ ( )
( ) | 0, ]]

i i i i i i i i

i i i i

E E Z X Z X Z W E Z X
Z X Z W
µ µ µ

µ
− − − = − −

− − =      （12）

三、基于DML的因果调节效应的估计

由于本研究关注的是处理效果的异质性，因此本文采用 DML

估计策略侧重于 Δ BGATE。

（一）估计方法

无偏机器学习方法采用三步估计策略。为了灵活处理潜在高

维协变量向量， 可以选用 Chernozhukov 等（2018）[1] 提出的

DML 方法。第一步，估计通常的双鲁棒评分函数。第二步，评分

函数回归到由调节变量 iZ 的协变量定义的两个指标变量上。最

后，计算由调节变量所划分的两组之间的差异，并对平衡变量 iW

求平均值。估计的双鲁棒评分函数由以下表达式： 

( ) ( ) ( )
( ) ( )( )

( )
( ) ( ) ( )( )

( )

1

1 0
1

0

1

ˆ ˆ
ˆ ˆ ˆ̂ ˆ

ˆ

; ,

1

1

ˆ
ˆ

B B

B

z h g w
h g w g w

w

z h g w

w

δ
φ θ η

λ

δ
θ

λ

∆ ∆

∆

−
= − +

− −
− −

−

    （13）

( ) ( ) ( )
( )( )

( )
( ) ( )( )

( )

1
1 0

1

0

1

,
, ,

,

1 ,
1 ,

d y z x
h z x z x

z x

d y z x
z x

µ
δ µ µ

π

µ
π

−
= − +

− −
−

−

    （14）

( ) ( )|z i iw P Z z W wλ = = =                   （15）

( ) ( )E | ,z i i ig w H Z z W wδ= = =             （16）

( ) [ ], E | , ,d i i i iz x Y D d Z z X xµ = = = =         （17）
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和 ( ) ( ), | ,d i i iz x P D d Z z X xπ = = = =                         （18）

其 中， ( )ˆ ,hδ  ( )ˆ , ,d z xµ ( )ˆ ,z wλ ( )ˆ ,d z xπ 分 别 代 表 了 ( ) ,hδ ( ), ,d z xµ

( ) ,z wλ ( ),d z xπ 的 估 计 值。 另 外， 需 注 意 ( )ˆ
ihδ 对 iZ 和 iW ，

( ) ( )E ˆ ,ˆ |ˆ
z i i ig w H Z z W wδ = = =  的 回 归 是 ( )ˆ

ihδ 对 iZ 和 iW 的 相 应 回 归

( ) ( )E ,ˆ |z i i ig w H Z z W wδ= = =   。因此， [ | ]E  表示一个一般的回

归估计量，它可以是线性的，也可以是非线性的，这取决于假定

的 数 据 生 成 过 程。 最 后， 估 计 的 干 扰 参 数

为 ( ) ( ) ( )( , , ˆˆ ˆ̂ , )d z zz x w g wη µ λ= 。

如上所述，必须估计分数函数 ( )ˆ hδ 。 ( )ˆ hδ 的干扰函数误差的

乘积必须收敛速度快于或等于 N ，并且必须使用与 K 折交叉验

证（K- folds）（K >1）的交叉拟合。在第二步估计中，是干扰项

的乘积。数误差必须以 N 的速度收敛，并必须使用与 J 折交叉验

证（J-folds）(J >1) 交叉拟合。如果满足某些条件，则估计量是

N 一 致 且 渐 近 正 态 的 （ 见 前 文 所 述 ）。 因 为

( )[ ; , ] 0B B
iE Hφ θ η∆ ∆ = ，所以 Bθ ∆ 的方差为

( ) ( )( ) ( )

( ) ( )

2

2 2

Var Var ; , E ; ,

E ;

ˆ

, E ; ,

B B B B B
i i

B B B B
i i

H H

H H

θ φ θ η φ θ η

φ θ η φ θ η

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

 = =   
  − =    

    （19）

其中， jS 是第二次估计步骤中的一个随机折叠，具体步骤参

考（Chernozhukov 等，2018）[1] 的研究。

（二）渐近性质

在以下假设条件下，本文研究了估计量的渐近性质：

假设2

（ 交 叠 性）： 倾 向 得 分 ( )z wλ 和 ( ),d z xπ 都 不 趋 于0和1：

( ) ( ), , 1z dw z xκ λ π κ< < −  ,x z∀ ∈ ∈  , 对于某些常数 0κ > 。

假设3 

（一致性）：扰动函数估计量是上确界范数一致的：

（1） ( ) ( )sup ˆ 0
p

w z zw wλ λ∈ − → ，

（2） ( ) ( )sup 0
p

w z zg w g w∈ − → ，

（3） ( ) ( ),up ,ˆs , 0
p

x z d dz x z xµ µ∈ ∈ − → 
，

（4） ( ) ( ),up ,ˆs , 0
p

x z d dz x z xπ π∈ ∈ − → 
。

假设4

（风险衰减性）：结果和倾向得分函数的估计误差的乘积衰

减为：

( ) ( )( ) ( ) ( )( )2 2 1E Ez i z i z i z i pg W g W W W o
N

λ λ     − − =       
            （20）

( ) ( )( ) ( ) ( )( )2 2 1E , , E ,ˆ ,ˆd i i d i i d i i d i i pZ X Z X Z X Z X o
N

µ µ π π     − − =       
     （21）

其中，期望是指 iX 和 iZ 或 iW 取

dµ 

dµ 、 

dπ 、 

zg 和 

zλ 。

如果两个扰动参数都以 N 一致速率的估计，则误差的乘积是

2

1
PO

N
 
 
 

同阶项。因此，参数的估计是
1
4N 一致就足够了。

假设5

（条件方差的平稳性）：结果和倾向得分函数的条件方差是

有界的：

（1） ( )( ) 1sup Var | ,i i i z
w

H Z z W wδ ∞
∈

= = < <


ò ，

（2） ( )( ) 0sup Var | ,i i i z
w

H Z z W wδ ∞
∈

= = < <


ò ，

（3） ( )
,

sup Var | , ,i i i i d
x X z Z

Y D d Z z X x ∞
∈ ∈

= = = < <ò 对于某些常

数 1 0, , 0z dz >ò ò ò 。

假设6

（收敛性）：第二步回归估计量 [ ]... | ...E 在定义域内室平稳的。

假设2至5是 DML 的标准假设（Chernozhukov 等，2018）[1]，唯

一的区别是这些假设只适用于第一个和第二个估计步骤。假设4是

必要的，以确保扰动项函数误差的乘积收敛速度比 N 更快或与

N 相等。当稀疏性条件得到满足时，各种机器学习方法的 L₂ 收

敛速率符合这些性质。Belloni 和 Chernozhukov（2013）[16] 表明，

在近似稀疏的情况下，这意味着排序系数的绝对值迅速衰减，

Lasso 估计量的误差是阶数

( )( )log max ,s p N
O

N

 
 
 
 

其中，p 是回归变量，s 是真实系数的未知数量。根据这些假

设，本文可以得出主要的理论结果（见定理1）：

定理1

在 假 设2— 假 设6下， 所 提 出 的 ΔBGATE 估 计 策 略 满 足

( ) ( )0ˆ ,
d

B BN N Vθ θ∆ ∆− →  和 ( )2
E ; ,B B

iV Hφ θ η∆ ∆ =   


。该估计量是

N 一致且渐近正态的。

四、因果调节效应的仿真

（一）数据生成过程

本文从用 p = 10开始模拟一个 p 维协变量矩阵 ,i pX 。前两个

协变量来自均匀分布的 ,0iX ， [ ],1 0,1iX U ，其余的协变量来自正态

分布的 ,2iX …， ( ), 1 0.5 , 1/12i pX − Ν ， 。所有协变量的平均值均为0.5，

标准差为 12 。调节变量 iZ 来自于一个有概率的伯努利分布

( ) ( )( ),0 ,1 2,4 ,0 ,11 | , 0.1 0.8i i i i iP Z X X X Xβ= = + ×           （22）

其中， ( )2,4 ,0 ,1i iX Xβ × 表示形似参数为2和4的 Beta 分布的累

积分布函数。处理变量 iD 是从下面伯努利分布中抽取的

, ,1 ,2 ,5
, ,1 ,2 ,5 2,4

, , , ,
( 1 | , , , , ) (0.2 0.6 ( ))

5
i o i i i i

i i o i i i i

X X X X Z
P D X X X X Z β= = +     （23）

本文据此指定了处理和非处理下的反应函数，以及调节变量

的两种状态。高度非线性的非处理响应函数由

2
0 ,0 ,1 ,2 ,3 ,5( ) sin( ) ( 0.5) 0.1 0.3i i i i i iX X X X X Xµ π= × × + − + +

处理下的反应函数依赖于 iZ ，并被定义为

2
1 ,0 ,1 ,2 ,5(0, ) ( ) sin(1.4 ) sin(6 ) 0.6 0.3i i i i i iX X X X X Xµ µ= + + + + 和

4
0 ,0 ,1 ,2 ,5(1, ) ( ) sin(4.9 ) sin(2 ) 0.7 0.4 0.2i i i i i i iX X X X X Xµ µ= + + + + + , 它们的

选择使得 ΔBGATE 与 ΔGATE 不同。最后，本文将潜在的结果

仿真为 , ,( ) ( , )d
i d i i d zY z z X eµ= + { }0,1z∀ ∈ ，综上所述，这些数据由一个

可观测的四维数据组成 ( ), , , ,2, , ,i r i r i r iy d z x 。
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（二）仿真和估计

本文对 ΔGATE 和 ΔBGATE 进行仿真和估计，二者的计算

公式如下：

1 0 1 0| 1 | 0GATE
i i i i i iE E Y Y Z E Y Y Zθ ∆     = − = − − =            （24）

1 0 1 0
,0 ,0| 1, | 0,

o

BGATE
X i i i i i i i iE E Y Y Z X E Y Y Z Xθ ∆     = − = − − =           （25）

2

1 0 1 0
,2 ,2| 1, | 0,BGATE

X i i i i i i i iE E Y Y Z X E Y Y Z Xθ ∆     = − = − − =           （26）

其中， ,0iX 在两个调节组之间不平衡，而 ,2iX 是平衡的。因此，

0

B
Xθ
∆ 不同，而

2

B
Xθ
∆ 等于 Gθ ∆ ，本文生成了 N=500的仿真样本。

在两个估计步骤中均使用了两折（K=2，J=2）。DML 估计

策略中的所有扰动函数都是使用随机森林来估计的，调整用于估

计扰动参数的学习算法是至关重要的（Bach 等，2024）[17]。本

文在两个估计步骤中再次使用了两折叠（K=2，J=2）。该算法

是利用 Chernozhukov 等（2021）[5] 提出的神经网络实现的。最

后，通过估计效应重新加权数据，使平衡变量的分布与调节变量

定义的组相同。重新加权算法平衡数据后，用 DML 估计量来估计

ΔGATE。

（三）仿真结果

表1给出了样本量为500时的效应和估计量的仿真结果。从

不同估计量的表现来看，DML 在几乎所有情况下的均方根误差

（RMSE）都最小，其次是 Auto-DML。与预期一致，重新加权

策略通常会导致标准差（STD）略微升高，从而导致 RMSE 升

高，它的覆盖率有时较差，原因在于其效应偏差或者标准误差过

大。此外，使用神经网络的样本量应该足够大，而这对于500个

样本量可能不是这样的情况，这或许就是 Auto-DML 的覆盖率对

ΔGATE 的估计较差的一个原因。最后，尽管 DML 估计量在模拟

中表现最好，但这一发现可能不适用于已知 DML 有性能问题的场

景，例如当倾向得分很极端时，建议采用 Auto-DML 估计量或重

新加权方法。

表1：不同效应和估计量的仿真结果（N=500）

效应 估计值 偏差 标准差 均方根误差

0

B
Xθ
∆ DML 2.442491e-17 0.166694 0.166527

0

B
Xθ
∆

Auto-DML 1.154632e-17 0.178052 0.177874

0

B
Xθ
∆ Reweighting -5.329071e-18 0.168738 0.168569

2

B
Xθ
∆

DML 5.585810e-18 0.003011 0.003008

2

B
Xθ
∆

Auto-DML -4.847226e-19 0.003829 0.003825

2

B
Xθ
∆ Reweighting -3.157197e-18 0.002978 0.002975

注：数据由作者自行整理。

接下来，本文比较了不同参数下三种放的结果，其中，图1—

图3描述了为中的误差的分布 

0

B
Xθ
∆ 和 

G
θ

∆ 如果利息的影响是
0

B
Xθ
∆ ，则

估计 

G
θ

∆ 导致不同的结果，因为变量 ,0iX 在两组 iZ 中不平衡。图中

展示了与标准差为
0

G
Xθ
∆ 与 Gθ ∆ 对比的正态分布的标准差。图1显示了

DML 的 结 果， 图2显 示 了 Auto-DML 的 结 果， 图3显 示 了

Reweighting 方法的结果。

图1：DML 仿真结果

注：横坐标的数值是指 ( )G Bθ θ
∆ ∆− or ( )B Bθ θ

∆ ∆− 。

图2：Auto-DML 仿真结果

注：横坐标的数值是指 ( )G Bθ θ
∆ ∆− or ( )B Bθ θ

∆ ∆− 。

图3：Reweighting Approach 仿真结果

注：横坐标的数值是指 ( )G Bθ θ
∆ ∆− or ( )B Bθ θ

∆ ∆− 。

在图1—图3中，两种效应的重叠分布体现在两种颜色的混合

的效果。与预期一致，估计 

G
θ

∆ 得出的结果与估计 

2

B
Xθ
∆ 相同，因为

,2iX 已经平衡。因此，如果协变量（或多个协变量）不平衡，则区

分这两种效应非常重要。

五、结论

本文提出了 Δ BGATE 估计量以衡量不同组间处理效果差

异，并考虑协变量差异，该方法适用于无混杂环境的处理效应

的异质性。同时，提出 DML 估计量，并证明该估计量在标准条
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件下的一致性和渐近正态性，同时提出两种替代估计策略：一

是 Auto-DML，可避免 DML 估计量对极端估计倾向分数的非稳

健性问题；二是 Reweighting 方法，可结合适用于重新加权数据

GATE 的一致估计量使用。仿真研究验证了这些估计策略的有效

性，为理解政策决策的差异化影响提供支持。

未来研究可从多方面拓展：将估计方法拓展至连续处理和调

节场景；探索在处理变量、调节变量或两者均存在工具变量的设

置下应用该方法；深入研究 RieszNet 的调整方式以及 Auto-DML

和重新加权估计量的渐近性质；开展更广泛的模拟研究，以全面

了解估计量在有限样本条件下的特性。
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